Some model-theoretic aspects of valued Frobenius fields

Jizhan Hong Huaqiao University, Quanzhou & Xiamen shuxuef@hqu.edu.cn CACML 2020 Nov. 14th, 2020, Tianjin(online)

§1 Immediate Expansions

Immediate Expansions

Frobenius Fields

QE

Denseness Property

Page 2/39

Every strongly minimal set is either trivial, or locally modular (like a vector space), or interprets an algebraically closed field.

Every strongly minimal set is either trivial, or locally modular (like a vector space), or interprets an algebraically closed field.

Remark

Proved to be false by Hrushovski(1986).

Every strongly minimal set is either trivial, or locally modular (like a vector space), or interprets an algebraically closed field.

Remark

Proved to be false by Hrushovski(1986).

Hrushovski-Zilber(1996)

Zilber's Trichotomy Conjecture is true for Zariski Geometries.

Every strongly minimal set is either trivial, or locally modular (like a vector space), or interprets an algebraically closed field.

Remark

Proved to be false by Hrushovski(1986).

Hrushovski-Zilber(1996)

Zilber's Trichotomy Conjecture is true for Zariski Geometries.

Remark

The true cases have a lot of applications in other areas, e.g. Diophantine geometry. Investigations on various restricted versions of Zilber's Trichotomy conjecture are still being carried out.

Zilber's Restricted Trichotomy Conj. (2012, open)

"assuming a strongly minimal structure M is interpretable in an algebraically closed field K and M is not locally modular, a field isomorphic to K is interpretable in M."

A field K with a distinguished subring V satisfying

$$(\forall x \in K^{\times}) \left[(x \in V) \bigvee (x^{-1} \in V) \right]$$

is called a **valued field**,

 \mathbf{QE}

A field K with a distinguished subring V satisfying

$$\left(\forall x \in K^{\times} \right) \left[(x \in V) \bigvee \left(x^{-1} \in V \right) \right]$$

is called a **valued field**, in which case V is called a **valuation** (ring) on K.

A field K with a distinguished subring V satisfying

$$\left(\forall x \in K^{\times} \right) \left[\left(x \in V \right) \bigvee \left(x^{-1} \in V \right) \right]$$

is called a valued field, in which case V is called a valuation (ring) on K. If V = K, then K is said to be trivially valued.

A field K with a distinguished subring V satisfying

$$\left(\forall x \in K^{\times} \right) \left[(x \in V) \bigvee \left(x^{-1} \in V \right) \right]$$

is called a valued field, in which case V is called a valuation (ring) on K. If V = K, then K is said to be trivially valued.

Notation

 $\mathscr{L}_r := \{+, -, \times, 0, 1\}$ denotes the **language of rings**.

A field K with a distinguished subring V satisfying

$$\left(\forall x \in K^{\times} \right) \left[\left(x \in V \right) \bigvee \left(x^{-1} \in V \right) \right]$$

is called a valued field, in which case V is called a valuation (ring) on K. If V = K, then K is said to be trivially valued.

Notation

 $\mathscr{L}_{r} := \{+, -, \times, 0, 1\}$ denotes the **language of rings**. $\mathscr{L}_{div} := \mathscr{L}_{r} \cup \{|\}$ denotes the **language of valued fields** (or valued rings).

A field K with a distinguished subring V satisfying

$$\left(\forall x \in K^{\times} \right) \left[\left(x \in V \right) \bigvee \left(x^{-1} \in V \right) \right]$$

is called a valued field, in which case V is called a valuation (ring) on K. If V = K, then K is said to be trivially valued.

Notation

 $\mathscr{L}_{r} := \{+, -, \times, 0, 1\}$ denotes the **language of rings**. $\mathscr{L}_{div} := \mathscr{L}_{r} \cup \{|\}$ denotes the **language of valued fields** (or valued rings). On a valued field, the division predicate is interpreted as

$$x \mid y \Leftrightarrow \frac{y}{x} \in V.$$

Remark

Valuations play a large role in the study of fields.

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 6/39

Remark

Valuations play a large role in the study of fields. The model theory of valued fields is also a very important and active area of applied model theory.

Convention

Definable: always presumes parameters from the underlying universe.

 \mathbf{QE}

Denseness Property

Haskell-Macpherson(1998)

(1). Assume that M is an \mathscr{L}_{div} -definable set in a valued algebraically closed field (K, V) and M is not \mathscr{L}_{r} -definable over K, then V is $\mathscr{L}_{r} \cup \{P_{M}\}$ -definable over K.

 \mathbf{QE}

Denseness Property

Haskell-Macpherson(1998)

- (1). Assume that M is an \mathscr{L}_{div} -definable set in a valued algebraically closed field (K, V) and M is not \mathscr{L}_{r} -definable over K, then V is $\mathscr{L}_{r} \cup \{P_{M}\}$ -definable over K.
- (2). Assume that M is an \mathscr{L}_{div} -definable set in a convexly valued real closed field (K, V) and M is not \mathscr{L}_{r} -definable over K, then V is $\mathscr{L}_{r} \cup \{P_{M}\}$ -definable over K.

Notation

 \mathscr{L}_1 and \mathscr{L}_2 : first-order languages.

Notation

 \mathscr{L}_1 and \mathscr{L}_2 : first-order languages. M a set, on which there is an \mathscr{L}_1 -structure, denoted by \mathcal{M}_1 , and an \mathscr{L}_2 -structure, denoted by \mathcal{M}_2 .

 \mathcal{M}_2 is an **expansion** of \mathcal{M}_1 , and \mathcal{M}_1 a **reduct** of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$, if every \mathscr{L}_1 -definable set over M is already \mathscr{L}_2 -definable over M.

 \mathcal{M}_2 is an **expansion** of \mathcal{M}_1 , and \mathcal{M}_1 a **reduct** of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$, if every \mathscr{L}_1 -definable set over M is already \mathscr{L}_2 -definable over M.

Definition

Suppose that \mathscr{L} is another first-order language and on M there is an \mathscr{L} -structure \mathcal{M} , such that $\mathcal{M}_1 \sqsubseteq \mathcal{M} \sqsubseteq \mathcal{M}_2$, then \mathcal{M} is called an **intermediate (first-order) structure** between \mathcal{M}_1 and \mathcal{M}_2 , or, of the pair $(\mathcal{M}_1, \mathcal{M}_2)$.

The two structures \mathcal{M}_1 and \mathcal{M}_2 are said to have the same (first-order) structure, denoted by $\mathcal{M}_1 \cong \mathcal{M}_2$, if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2 \sqsubseteq \mathcal{M}_1$. Its negation is denoted by $\mathcal{M}_1 \not\cong \mathcal{M}_2$.

 \mathbf{QE}

The two structures \mathcal{M}_1 and \mathcal{M}_2 are said to have the same (first-order) structure, denoted by $\mathcal{M}_1 \cong \mathcal{M}_2$, if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2 \sqsubseteq \mathcal{M}_1$. Its negation is denoted by $\mathcal{M}_1 \not\cong \mathcal{M}_2$.

Definition

 \mathcal{M}_2 is a **proper expansion** of \mathcal{M}_1 , and \mathcal{M}_1 a **proper reduct** of \mathcal{M}_2 , if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2 \not\cong \mathcal{M}_1$. An intermediate structure \mathcal{M} between \mathcal{M}_1 and \mathcal{M}_2 is called a **proper intermediate** structure if $\mathcal{M}_1 \not\cong \mathcal{M} \not\cong \mathcal{M}_2$.

 \mathcal{M}_2 is an **immediate expansion** of \mathcal{M}_1 , and \mathcal{M}_1 an **immediate reduct** of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \[Box] \mathcal{M}_2$ or $\mathcal{M}_2 \[Box] \mathcal{M}_1$, if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$ and there is no proper intermediate structures between \mathcal{M}_1 and \mathcal{M}_2 . The negation of $\mathcal{M}_2 \[Box] \mathcal{M}_1$ is denoted by $\mathcal{M}_2 \[Box] \mathcal{M}_1$.

 \mathcal{M}_2 is an **immediate expansion** of \mathcal{M}_1 , and \mathcal{M}_1 an **immediate reduct** of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \ \ \mathcal{M}_2$ or $\mathcal{M}_2 \ \ \mathcal{M}_1$, if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$ and there is no proper intermediate structures between \mathcal{M}_1 and \mathcal{M}_2 . The negation of $\mathcal{M}_2 \ \ \mathcal{M}_1$ is denoted by $\mathcal{M}_2 \ \ \mathcal{M}_1$.

Remark

Being an immediate expansion is not a first-order property.

 \mathcal{M}_2 is an **immediate expansion** of \mathcal{M}_1 , and \mathcal{M}_1 an **immediate reduct** of \mathcal{M}_2 , denoted by $\mathcal{M}_1 \[Box] \mathcal{M}_2$ or $\mathcal{M}_2 \[Box] \mathcal{M}_1$, if $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$ and there is no proper intermediate structures between \mathcal{M}_1 and \mathcal{M}_2 . The negation of $\mathcal{M}_2 \[Box] \mathcal{M}_1$ is denoted by $\mathcal{M}_2 \[Box] \mathcal{M}_1$.

Remark

Being an immediate expansion is not a first-order property.

Notation

If T_2 is a theory extending T_1 , then by $T_2 \[Be] T_1$, we mean that for any $\mathcal{M}_2 \models T_2$, if its reduct is denoted by $\mathcal{M}_1 \models T_1$ then we have $\mathcal{M}_2 \[Be] \mathcal{M}_1$.

Haskell-Macpherson(1998, rephrased)

- (1). ACVF $\[Begin{array}{c} ACF. \]$
- (2). RCVF \mathbb{Z} RCF.

Haskell-Macpherson(1998, rephrased)

- (1). ACVF \mathbb{Z} ACF.
- (2). RCVF $\[Begin{array}{c} & \operatorname{RCF} \\ \end{array}$.

Theorem(Hong, 2014)

SCVF \mathbb{Z} SCF,

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 13/39

Haskell-Macpherson(1998, rephrased)

- (1). ACVF \mathbb{Z} ACF.
- (2). RCVF $\[Begin{array}{c} & \operatorname{RCF} \\ \end{array}$

Theorem(Hong,2014)

SCVF $\ensuremath{\underline{?}}$ SCF, and the same scenario happens for some valued o-minimal fields.

Immediate Expansions

Frobenius Fields

QE

Denseness Property

Page 13/39

Question

What valued field is an immediate expansion of its underlying field?

Known results

- (1). ACVF \mathbb{Z} ACF.
- (2). RCVF \mathbb{Z} RCF.
- (3). SCVF $\mbox{\sc SCF},$ and the same scenario happens for some valued o-minimal fields.
- (4). Fields with \mathscr{L}_r -definable valuations, e.g. global fields, local fields, some Henselian valued fields.

Known results

- (1). ACVF \mathbb{Z} ACF.
- (2). RCVF \mathbb{Z} RCF.
- (3). SCVF $\mbox{\sc SCF},$ and the same scenario happens for some valued o-minimal fields.
- (4). Fields with $\mathscr{L}_{\mathbf{r}}$ -definable valuations, e.g. global fields, local fields, some Henselian valued fields.

Remark

A family of examples of valued fields, $K(x_i, i \in \omega + \omega)$, which are non-immediate expansions of their underlying fields were given by Delon(2012).

Question

PACVF \mathbb{Z} PACF?

- ► PACVF is the *L*_{div}-theory of pseudo-algebraically closed nontrivially valued fields.
- ▶ PACF is the \mathscr{L}_r -theory of pseudo-algebraically closed fields.

§2 Frobenius Fields

 \mathbf{QE}

Denseness Property

A field over which every geometrically integral variety (or equivalently every absolutely irreducible affine algebraic set defined over this field in the sense of Weil) has a rational point is called a **pseudo-algebraically closed field**.

A field over which every geometrically integral variety (or equivalently every absolutely irreducible affine algebraic set defined over this field in the sense of Weil) has a rational point is called a **pseudo-algebraically closed field**.

Remark

A field is PAC iff it is existentially closed in every regular field extension.

A field over which every geometrically integral variety (or equivalently every absolutely irreducible affine algebraic set defined over this field in the sense of Weil) has a rational point is called a **pseudo-algebraically closed field**.

Remark

A field is PAC iff it is existentially closed in every regular field extension.

Examples

(1). Separably closed fields are PAC.

A field over which every geometrically integral variety (or equivalently every absolutely irreducible affine algebraic set defined over this field in the sense of Weil) has a rational point is called a **pseudo-algebraically closed field**.

Remark

A field is PAC iff it is existentially closed in every regular field extension.

Examples

- (1). Separably closed fields are PAC.
- (2). (Ax) Pseudo-finite fields (i.e. infinite models of the theory of all finite fields) are PAC.

A field over which every geometrically integral variety (or equivalently every absolutely irreducible affine algebraic set defined over this field in the sense of Weil) has a rational point is called a **pseudo-algebraically closed field**.

Remark

A field is PAC iff it is existentially closed in every regular field extension.

Examples

- (1). Separably closed fields are PAC.
- (2). (Ax) Pseudo-finite fields (i.e. infinite models of the theory of all finite fields) are PAC.
- (3). (Jarden, The PAC Nullstellensatz) For almost all finite tuples of the absolute Galois group of a countable Hilbertian field, their fixed fields are PAC.

(1). Being PAC is a first-order property in \mathscr{L}_r .

Immediate Expansions

 \mathbf{QE}

Denseness Property

- (1). Being PAC is a first-order property in $\mathscr{L}_r.$
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.

- (1). Being PAC is a first-order property in $\mathscr{L}_{\mathbf{r}}$.
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.
- (3). A PAC field does not admit any ordering compatible with the field structure.

- (1). Being PAC is a first-order property in $\mathscr{L}_{\mathbf{r}}$.
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.
- (3). A PAC field does not admit any ordering compatible with the field structure.
- (4). (Prestel) A PAC field is V-dense in its algebraic closure with respect to any valuation V on the algebraic closure.

- (1). Being PAC is a first-order property in $\mathscr{L}_{\mathbf{r}}$.
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.
- (3). A PAC field does not admit any ordering compatible with the field structure.
- (4). (Prestel) A PAC field is V-dense in its algebraic closure with respect to any valuation V on the algebraic closure.
- (5). (Frey-Prestel) PAC+Henselian = separably closed.

- (1). Being PAC is a first-order property in $\mathscr{L}_{\mathbf{r}}$.
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.
- (3). A PAC field does not admit any ordering compatible with the field structure.
- (4). (Prestel) A PAC field is V-dense in its algebraic closure with respect to any valuation V on the algebraic closure.
- (5). (Frey-Prestel) PAC+Henselian = separably closed.
- (6). (Duret) PAC+NIP=separably closed.

- (1). Being PAC is a first-order property in $\mathscr{L}_{\mathbf{r}}$.
- (2). (Ax-Roquette) Algebraic extensions of PAC fields are still PAC.
- (3). A PAC field does not admit any ordering compatible with the field structure.
- (4). (Prestel) A PAC field is V-dense in its algebraic closure with respect to any valuation V on the algebraic closure.
- (5). (Frey-Prestel) PAC+Henselian = separably closed.
- (6). (Duret) PAC+NIP=separably closed.
- (7). (Ax, projectivity) If K is PAC and A, B are profinite groups, then for any epimorphisms ρ : Gal $(K) \to A$ and $\alpha : B \to A$, there exists a homomorphism $\gamma :$ Gal $(K) \to B$ such that $\rho = \alpha \circ \gamma$.

(1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.

- (1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.
- (2). (Jarden-Kiehne) The first-order theory of e-free perfect PAC fields is decidable.

- (1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.
- (2). (Jarden-Kiehne) The first-order theory of e-free perfect PAC fields is decidable.
- (3). (Jarden) The first-order theory of perfect ω -free PAC K-fields is decidable when K is 'given'.

- (1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.
- (2). (Jarden-Kiehne) The first-order theory of e-free perfect PAC fields is decidable.
- (3). (Jarden) The first-order theory of perfect ω -free PAC K-fields is decidable when K is 'given'.
- (4). (Cherlin-van den Dries-MacIntyre) For each $e \in \mathbf{N}$, the theory of PAC fields with ranks of their absolute Galois groups not larger than e is decidable.

- (1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.
- (2). (Jarden-Kiehne) The first-order theory of e-free perfect PAC fields is decidable.
- (3). (Jarden) The first-order theory of perfect ω -free PAC K-fields is decidable when K is 'given'.
- (4). (Cherlin-van den Dries-MacIntyre) For each $e \in \mathbf{N}$, the theory of PAC fields with ranks of their absolute Galois groups not larger than e is decidable.
- (5). (Cherlin-van den Dries-MacIntyre) The theory of PAC fields is undecidable.

- (1). (Ax) The first-order theory of pseudo-finite fields in \mathscr{L}_r is decidable.
- (2). (Jarden-Kiehne) The first-order theory of e-free perfect PAC fields is decidable.
- (3). (Jarden) The first-order theory of perfect ω -free PAC K-fields is decidable when K is 'given'.
- (4). (Cherlin-van den Dries-MacIntyre) For each $e \in \mathbf{N}$, the theory of PAC fields with ranks of their absolute Galois groups not larger than e is decidable.
- (5). (Cherlin-van den Dries-MacIntyre) The theory of PAC fields is undecidable.
- (6). (Haran-Lubotzki) The first-order theory of Frobenius fields is decidable.

A PAC field K is called a **Frobenius field** if $\operatorname{Gal}(K)$ satisfies the Embedding Property: for any profinite group epimorphisms $\zeta : \operatorname{Gal}(K) \to A$ and $\alpha : B \to A$ with B a finite quotient of $\operatorname{Gal}(K)$, there exists an epimorphism $\gamma : G \to B$ such that $\zeta = \alpha \circ \gamma$.

A PAC field K is called a **Frobenius field** if $\operatorname{Gal}(K)$ satisfies the Embedding Property: for any profinite group epimorphisms $\zeta : \operatorname{Gal}(K) \to A$ and $\alpha : B \to A$ with B a finite quotient of $\operatorname{Gal}(K)$, there exists an epimorphism $\gamma : G \to B$ such that $\zeta = \alpha \circ \gamma$.

Definition

A PAC field K is said to be ω -free Gal(K) satisfies the Embedding Property without the assumption that B be a quotient.

A PAC field K is called a **Frobenius field** if $\operatorname{Gal}(K)$ satisfies the Embedding Property: for any profinite group epimorphisms $\zeta : \operatorname{Gal}(K) \to A$ and $\alpha : B \to A$ with B a finite quotient of $\operatorname{Gal}(K)$, there exists an epimorphism $\gamma : G \to B$ such that $\zeta = \alpha \circ \gamma$.

Definition

A PAC field K is said to be ω -free Gal(K) satisfies the Embedding Property without the assumption that B be a quotient.

Remark

These are both first-order in $\mathscr{L}_{\mathbf{r}}$.

Immediate Expansions

§3 Quantifier Elimination

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 22/39

Define the **Galois formalism** as the language $\mathscr{L}_{\mathbf{r}}$ expanded by adding the *n*-ary predicates S_n ,

Define the **Galois formalism** as the language $\mathscr{L}_{\mathbf{r}}$ expanded by adding the *n*-ary predicates S_n , to be interpreted as

$$S_n(c_1,\ldots,c_n) \Leftrightarrow \exists x(x^n + c_1 x^{n-1} + \cdots + c_n = 0),$$

Define the **Galois formalism** as the language $\mathscr{L}_{\mathbf{r}}$ expanded by adding the *n*-ary predicates S_n , to be interpreted as

$$S_n(c_1,\ldots,c_n) \Leftrightarrow \exists x(x^n + c_1 x^{n-1} + \cdots + c_n = 0),$$

and 0-ary predicates I_G for each isomorphism type G of finite groups,

Define the **Galois formalism** as the language $\mathscr{L}_{\mathbf{r}}$ expanded by adding the *n*-ary predicates S_n , to be interpreted as

$$S_n(c_1,\ldots,c_n) \Leftrightarrow \exists x(x^n + c_1 x^{n-1} + \cdots + c_n = 0),$$

and 0-ary predicates I_G for each isomorphism type G of finite groups, to be interpreted as

 $I_G \Leftrightarrow ``\exists L/K$ such that $\operatorname{Gal}(L/K) \cong G$ " (this is 1st-order).

Define the **Galois formalism** as the language $\mathscr{L}_{\mathbf{r}}$ expanded by adding the *n*-ary predicates S_n , to be interpreted as

$$S_n(c_1,\ldots,c_n) \Leftrightarrow \exists x(x^n + c_1 x^{n-1} + \cdots + c_n = 0),$$

and 0-ary predicates I_G for each isomorphism type G of finite groups, to be interpreted as

 $I_G \Leftrightarrow ``\exists L/K$ such that $\operatorname{Gal}(L/K) \cong G$ " (this is 1st-order).

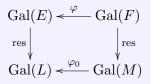
Theorem(Cherlin-van den Dries-MacIntyre)

The theory of perfect Frobenius fields in the Galois formalism admits quantifier elimination.

The proof relies on the following important Embedding Lemma.

The Embedding Lemma(Jarden-Kiehne)

Let E/L and F/M be separable field extensions satisfying: E is countable and F is PAC and \aleph_1 -saturated. Suppose that there are an isomorphism $\Phi_0: L_s \to M_s$ with $\Phi_0(L) = M$ and a commutative diagram



where φ_0 is the isomorphism induced by Φ_0 and φ is a homomorphism. If $\operatorname{char}(L) = p > 0$, then suppose furthermore that $[E:E^p] \leq [F:F^p]$. Then there exists an extension of Φ_0 to an embedding $\Phi: E^{\operatorname{sep}} \to F^{\operatorname{sep}}$ which induces φ with $F/\Phi(E)$ separable.

Suppose that K is a field with char(K) = p > 0. Then there exists a unique $e \in \omega \cup \{\infty\}$ such that $[K : K^p] = p^e$. This e is called the **exponent of imperfection** of K and $[K : K^p]$ the **degree of imperfection**.

 \mathbf{QE}

Denseness Property

Suppose that K is a field with char(K) = p > 0. Then there exists a unique $e \in \omega \cup \{\infty\}$ such that $[K : K^p] = p^e$. This e is called the **exponent of imperfection** of K and $[K : K^p]$ the **degree of imperfection**.

A set of elements $b_0, \ldots, b_{n-1} \in K$ are **p-independent** in K if all the *p*-monomials in b_0, \ldots, b_{n-1} of the form

$$\prod_{j=0}^{n-1} b_j^{i(j)}, \quad i: n \to p$$

are linearly independent over K^p .

Suppose that K is a field with char(K) = p > 0. Then there exists a unique $e \in \omega \cup \{\infty\}$ such that $[K : K^p] = p^e$. This e is called the **exponent of imperfection** of K and $[K : K^p]$ the **degree of imperfection**.

A set of elements $b_0, \ldots, b_{n-1} \in K$ are **p-independent** in K if all the *p*-monomials in b_0, \ldots, b_{n-1} of the form

$$\prod_{j=0}^{n-1} b_j^{i(j)}, \quad i: n \to p$$

are linearly independent over K^p . A **p-basis** is a set of maximally *p*-independent elements in K.

Suppose that K is a field with char(K) = p > 0. Then there exists a unique $e \in \omega \cup \{\infty\}$ such that $[K : K^p] = p^e$. This e is called the **exponent of imperfection** of K and $[K : K^p]$ the **degree of imperfection**.

A set of elements $b_0, \ldots, b_{n-1} \in K$ are **p-independent** in K if all the *p*-monomials in b_0, \ldots, b_{n-1} of the form

$$\prod_{j=0}^{n-1} b_j^{i(j)}, \quad i: n \to p$$

are linearly independent over K^p . A **p-basis** is a set of maximally *p*-independent elements in *K*. $[K:K^p] = p^e$ iff *K* has a *p*-basis with exactly *e* elements.

A field extension L/K is **separable** if the *p*-independence relation is preserved.

A field extension L/K is **separable** if the *p*-independence relation is preserved. If furthermore, K is relatively algebraically closed in L, then L/K is said to be **regular**.

Definition(Srour, 1986)

Suppose that K is a field of positive characteristic p. When n > 0 and $0 \le i \le p^n$, we define the **relative** p-coordinate functions $\lambda_{n,i}(x; y_1, \ldots, y_n)$ as follows: if y_1, \ldots, y_n are not p-independent in K or $x \notin K^p(y_1, \ldots, y_n)$, then $\lambda_{n,i}(x; y_1, \ldots, y_n) = 0$, otherwise $\lambda_{n,i}(x; y_1, \ldots, y_n)$ is the p-th root of the unique *i*-th coefficient of x with respect y_1, \ldots, y_n when x is written as a linear combination of p-monomials in y_1, \ldots, y_n over K^p . If n = 0, then we defined $\lambda_{n,i}(x) = \lambda_{0,0}(x)$ to be $x^{1/p}$ if $x \in K^p$, 0 if $x \notin K^p$.

Given n + 1 elements $a_0, \ldots, a_{n-1}, a_n$ in a field K, denote that the maximal splitting factor of

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

over K is

$$b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0,$$

where $b_n, \ldots, b_0 \in K$, some of which could be zeros.

Given n + 1 elements $a_0, \ldots, a_{n-1}, a_n$ in a field K, denote that the maximal splitting factor of

$$a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0$$

over K is

$$b_n X^n + b_{n-1} X^{n-1} + \dots + b_1 X + b_0,$$

where $b_n, \ldots, b_0 \in K$, some of which could be zeros. For each $0 \le i \le n$, we define the *i*-th **splitting coefficient** to be

$$\theta_{n,i}(a_0,a_1,\ldots,a_n):=b_i.$$

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 28/39

Notation

$$\mathscr{L}_{\theta,p,\mathrm{div}} := \mathscr{L}_{\mathrm{div}} \cup \{\lambda_{n,i}\}_{n,i} \cup \{\theta_j\}_j.$$

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 29/39

Theorem(FrobVF $_{p^e}$ has QE)

For any $e \in \omega \cup \{\infty\}$, let $\operatorname{FrobVF}_{p^e}$ be the theory of Frobenius non-trivially valued fields of characteristic p with exponent of imperfection e in

 $\mathscr{L}_{\theta,p,\mathrm{div}} \cup \{I_G\}_G \text{ a finite group},$

where

 $K \models I_G \Leftrightarrow ``\exists L/K$ such that $\operatorname{Gal}(L/K) \cong G$ ''.

Then $\operatorname{FrobVF}_{p^e}$ has quantifier elimination.

 \mathbf{QE}

Valuation Theoretic Embedding Lemma

Suppose that valued fields (E, V_E) and (F, V_F) extend (L, V_L) and (M, V_M) resp. with E/L and F/M regular field extensions, that F is PAC and $|E|^+$ -saturated in \mathscr{L}_{div} with the exponent of imperfection of E not more than that of F, and that there is a field isomorphism $\Phi_0: L^{\text{sep}} \to M^{\text{sep}}$ and a commutative diagram

$$\begin{array}{c|c} \operatorname{Gal}(E) & \stackrel{\varphi}{\longleftarrow} & \operatorname{Gal}(F) \\ & \underset{\operatorname{res}}{\operatorname{res}} & & & & \\ & & & & \\ \operatorname{Gal}(L) & \stackrel{\varphi_0}{\longleftarrow} & \operatorname{Gal}(M), \end{array}$$

where φ_0 is induced by Φ_0 , φ is a homomorphism, and Φ_0 restricts to an \mathscr{L}_{div} -isomorphism from (L, V_L) onto (M, V_M) . Then there exists an extension of Φ_0 to a field embedding $\Phi: E^{\text{sep}} \to F^{\text{sep}}$ that induces φ with $F/\Phi(E)$ separable and that Φ restricts to an \mathscr{L}_{div} -embedding from (E, V_E) into (F, V_F) . If furthermore φ is surjective, then $F/\Phi(E)$ is regular.

Corollary (PACVF $_{p^e}^{\omega}$ has QE)

For any $e \in \omega \cup \{\infty\}$, the theory of ω -free pseudo-algebraically closed non-trivially valued fields of characteristic p with exponent of imperfection e in $\mathscr{L}_{\theta,p,\mathrm{div}}$, denoted by $\mathrm{PACVF}_{p^e}^{\omega}$, admits quantifier elimination.

§3 The Denseness Property

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 33/39

Kollár's Density Theorem(Kollár, 2007)

Suppose that K is a PAC field, V a non-trivial valuation on K^{alg} . Then for any geometrically integral K-variety X, X(K) is V-dense in $X(K^{\text{alg}})$.

Theorem (Bary-Soroker, 2012)

Let K be a PAC field, Y an absolutely irreducible smooth K-variety with ring of regular functions $R, f(X) \in R[X]$ a separable monic polynomial, and P a partition of deg(f). Assume that the induced embedding problem has a solution whose orbit type is P. Then there exists a Zariski dense set $\mathfrak{p} \in Y(K)$ such that $\varphi_{\mathfrak{p}}(f)$ is a separable polynomial of factorization type P.

Corollary

Let K be a pseudo-algebraically closed field, W a valuation ring on K^{alg} , Y a geometrically integral smooth K-variety with its ring of regular functions R, $f(X) \in R[X]$ a separable monic polynomial, P a partition of deg f. Assume that the induced embedding problem has a solution whose orbit type is P. Then there exists a W-dense subset $\mathfrak{p} \in Y(K)$ of $Y(K^{\text{alg}})$ such that $\varphi_{\mathfrak{p}}(f)$ is a separable polynomial of factorization type P.

Theorem

Suppose that $(K, V) \models \text{PACVF}_{p^e}^{\omega}$ for a natural number $e < \infty$ and that W is a valuation on K^{alg} extending V. Then every $\mathscr{L}_{\theta,p,\text{div}}$ -definable set in K is W-dense in an \mathscr{L}_{div} -definable set in K^{alg} with parameters from K. More precisely, if $\varphi(\boldsymbol{x}, \boldsymbol{a})$ is an $\mathscr{L}_{\theta,p,\text{div}}$ -formula with $\boldsymbol{a} \in K^n$, then there exists an \mathscr{L}_{div} -formula $\tilde{\varphi}(\boldsymbol{x}, \boldsymbol{b})$ with $\boldsymbol{b} \in K^m$ such that $\varphi(K)$ is a W-dense subset of $\tilde{\varphi}(K^{\text{alg}})$.

To be proved recently

 $\operatorname{PACVF}_{p^e}^{\omega} \ \mathbb{Z} \operatorname{PACF}_{p^e}^{\omega}$.

Immediate Expansions From

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 38/39

Thank you!

Immediate Expansions

Frobenius Fields

 \mathbf{QE}

Denseness Property

Page 39/39