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§1 Immediate Expansions
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Zilber’s Trichotomy Conjecture(1984)

Every strongly minimal set is either trivial, or locally modular
(like a vector space), or interprets an algebraically closed field.

Remark

Proved to be false by Hrushovski(1986).

Hrushovski-Zilber(1996)

Zilber’s Trichotomy Conjecture is true for Zariski Geometries.

Remark

The true cases have a lot of applications in other areas, e.g.
Diophantine geometry. Investigations on various restricted
versions of Zilber’s Trichotomy conjecture are still being carried
out.
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Zilber’s Restricted Trichotomy Conj.(2012, open)

“assuming a strongly minimal structure M is interpretable in
an algebraically closed field K and M is not locally modular, a
field isomorphic to K is interpretable in M .”
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Definition

A field K with a distinguished subring V satisfying

(∀x ∈ K×)
[
(x ∈ V )

∨(
x−1 ∈ V

)]
is called a valued field,

in which case V is called a valuation
(ring) on K. If V = K, then K is said to be trivially valued.

Notation

Lr := {+,−,×, 0, 1} denotes the language of rings.
Ldiv := Lr ∪ {|} denotes the language of valued fields (or
valued rings). On a valued field, the division predicate is
interpreted as

x | y ⇔ y

x
∈ V.
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Remark

Valuations play a large role in the study of fields.

The model
theory of valued fields is also a very important and active area
of applied model theory.

Immediate Expansions Frobenius Fields QE Denseness Property Page 6/39



Remark

Valuations play a large role in the study of fields. The model
theory of valued fields is also a very important and active area
of applied model theory.

Immediate Expansions Frobenius Fields QE Denseness Property Page 6/39



Convention

Definable: always presumes parameters from the underlying
universe.
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Haskell-Macpherson(1998)

(1). Assume that M is an Ldiv-definable set in a valued
algebraically closed field (K,V ) and M is not Lr-definable
over K, then V is Lr ∪ {PM}-definable over K.

(2). Assume that M is an Ldiv-definable set in a convexly
valued real closed field (K,V ) and M is not Lr-definable
over K, then V is Lr ∪ {PM}-definable over K.
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Notation

L1 and L2: first-order languages.

M a set, on which there is an L1-structure, denoted by M1,
and an L2-structure, denoted by M2.
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Definition

M2 is an expansion of M1, and M1 a reduct of M2, denoted
by M1 ⊑ M2, if every L1-definable set over M is already
L2-definable over M .

Definition

Suppose that L is another first-order language and on M there
is an L -structure M, such that M1 ⊑ M ⊑ M2, then M is
called an intermediate (first-order) structure between M1

and M2, or, of the pair (M1,M2).

Immediate Expansions Frobenius Fields QE Denseness Property Page 10/39



Definition

M2 is an expansion of M1, and M1 a reduct of M2, denoted
by M1 ⊑ M2, if every L1-definable set over M is already
L2-definable over M .

Definition

Suppose that L is another first-order language and on M there
is an L -structure M, such that M1 ⊑ M ⊑ M2, then M is
called an intermediate (first-order) structure between M1

and M2, or, of the pair (M1,M2).

Immediate Expansions Frobenius Fields QE Denseness Property Page 10/39



Definition

The two structures M1 and M2 are said to have the same
(first-order) structure, denoted by M1

∼∼∼ M2, if
M1 ⊑ M2 ⊑ M1. Its negation is denoted by M1 ̸∼∼∼ M2.

Definition

M2 is a proper expansion of M1, and M1 a proper reduct
of M2, if M1 ⊑ M2 ̸∼∼∼ M1. An intermediate structure M
between M1 and M2 is called a proper intermediate
structure if M1 ̸∼∼∼ M ̸∼∼∼ M2.
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Definition

M2 is an immediate expansion of M1, and M1 an
immediate reduct of M2, denoted by M1

▽△ M2 or
M2

▽△ M1, if M1 ⊑ M2 and there is no proper intermediate
structures between M1 and M2. The negation of M2

▽△ M1 is
denoted by M2

▼△ M1.

Remark

Being an immediate expansion is not a first-order property.

Notation

If T2 is a theory extending T1, then by T2
▽△ T1, we mean that

for any M2 |= T2, if its reduct is denoted by M1 |= T1 then we
have M2

▽△ M1.
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Haskell-Macpherson(1998, rephrased)

(1). ACVF ▽△ ACF.

(2). RCVF ▽△ RCF.

Theorem(Hong,2014)

SCVF ▽△ SCF, and the same scenario happens for some valued
o-minimal fields.
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Question

What valued field is an immediate expansion of its underlying
field?
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Known results

(1). ACVF ▽△ ACF.

(2). RCVF ▽△ RCF.

(3). SCVF ▽△ SCF, and the same scenario happens for some
valued o-minimal fields.

(4). Fields with Lr-definable valuations, e.g. global fields, local
fields, some Henselian valued fields.

Remark

A family of examples of valued fields, K(xi, i ∈ ω + ω), which
are non-immediate expansions of their underlying fields were
given by Delon(2012).
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Question

PACVF ▽△ PACF?

▶ PACVF is the Ldiv-theory of pseudo-algebraically closed
nontrivially valued fields.

▶ PACF is the Lr-theory of pseudo-algebraically closed fields.
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§2 Frobenius Fields

Immediate Expansions Frobenius Fields QE Denseness Property Page 17/39



Definition

A field over which every geometrically integral variety (or
equivalently every absolutely irreducible affine algebraic set
defined over this field in the sense of Weil) has a rational point
is called a pseudo-algebraically closed field.

Remark

A field is PAC iff it is existentially closed in every regular field
extension.

Examples

(1). Separably closed fields are PAC.

(2). (Ax) Pseudo-finite fields (i.e. infinite models of the theory
of all finite fields) are PAC.

(3). (Jarden, The PAC Nullstellensatz) For almost all finite
tuples of the absolute Galois group of a countable
Hilbertian field, their fixed fields are PAC.
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Some properties of PAC fields

(1). Being PAC is a first-order property in Lr.

(2). (Ax-Roquette) Algebraic extensions of PAC fields are still
PAC.

(3). A PAC field does not admit any ordering compatible with
the field structure.

(4). (Prestel) A PAC field is V -dense in its algebraic closure
with respect to any valuation V on the algebraic closure.

(5). (Frey-Prestel) PAC+Henselian = separably closed.

(6). (Duret) PAC+NIP=separably closed.

(7). (Ax, projectivity) If K is PAC and A,B are profinite
groups, then for any epimorphisms ρ : Gal(K) → A and
α : B → A, there exists a homomorphism γ : Gal(K) → B
such that ρ = α ◦ γ.
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Decidability results

(1). (Ax) The first-order theory of pseudo-finite fields in Lr is
decidable.

(2). (Jarden-Kiehne) The first-order theory of e-free perfect
PAC fields is decidable.

(3). (Jarden) The first-order theory of perfect ω-free PAC
K-fields is decidable when K is ‘given’.

(4). (Cherlin-van den Dries-MacIntyre) For each e ∈ N, the
theory of PAC fields with ranks of their absolute Galois
groups not larger than e is decidable.

(5). (Cherlin-van den Dries-MacIntyre) The theory of PAC
fields is undecidable.

(6). (Haran-Lubotzki) The first-order theory of Frobenius fields
is decidable.
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Definition

A PAC field K is called a Frobenius field if Gal(K) satisfies
the Embedding Property: for any profinite group epimorphisms
ζ : Gal(K) → A and α : B → A with B a finite quotient of
Gal(K), there exists an epimorphism γ : G → B such that
ζ = α ◦ γ.

Definition

A PAC field K is said to be ω-free Gal(K) satisfies the
Embedding Property without the assumption that B be a
quotient.

Remark

These are both first-order in Lr.
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§3 Quantifier Elimination
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Definition(Cherlin-van den Dries-MacIntyre)

Define the Galois formalism as the language Lr expanded by
adding the n-ary predicates Sn,

to be interpreted as

Sn(c1, . . . , cn) ⇔ ∃x(xn + c1x
n−1 + · · ·+ cn = 0),

and 0-ary predicates IG for each isomorphism type G of finite
groups, to be interpreted as

IG ⇔ “∃L/K such that Gal(L/K) ∼= G” (this is 1st-order).

Theorem(Cherlin-van den Dries-MacIntyre)

The theory of perfect Frobenius fields in the Galois formalism
admits quantifier elimination.
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The proof relies on the following important Embedding Lemma.

The Embedding Lemma(Jarden-Kiehne)

Let E/L and F/M be separable field extensions satisfying: E is
countable and F is PAC and ℵ1-saturated. Suppose that there
are an isomorphism Φ0 : Ls → Ms with Φ0(L) = M and a
commutative diagram

Gal(E)

res

��

Gal(F )
φoo

res

��
Gal(L) Gal(M)

φ0oo

where φ0 is the isomorphism induced by Φ0 and φ is a
homomorphism. If char(L) = p > 0, then suppose furthermore
that [E : Ep] ≤ [F : F p].
Then there exists an extension of Φ0 to an embedding
Φ : Esep → F sep which induces φ with F/Φ(E) separable.
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Theorem-definition

Suppose that K is a field with char(K) = p > 0. Then there
exists a unique e ∈ ω ∪ {∞} such that [K : Kp] = pe. This e is
called the exponent of imperfection of K and [K : Kp] the
degree of imperfection.

A set of elements b0, . . . , bn−1 ∈ K are p-independent in K if
all the p-monomials in b0, . . . , bn−1 of the form

n−1∏
j=0

b
i(j)
j , i : n → p

are linearly independent over Kp.
A p-basis is a set of maximally p-independent elements in K.
[K : Kp] = pe iff K has a p-basis with exactly e elements.
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Definition

A field extension L/K is separable if the p-independence
relation is preserved.

If furthermore, K is relatively
algebraically closed in L, then L/K is said to be regular.
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Definition(Srour, 1986)

Suppose that K is a field of positive characteristic p. When
n > 0 and 0 ≤ i ≤ pn, we define the relative p-coordinate
functions λn,i(x; y1, . . . , yn) as follows: if y1, . . . , yn are not
p-independent in K or x ̸∈ Kp(y1, . . . , yn), then
λn,i(x; y1, . . . , yn) = 0, otherwise λn,i(x; y1, . . . , yn) is the p-th
root of the unique i-th coefficient of x with respect y1, . . . , yn
when x is written as a linear combination of p-monomials in
y1, . . . , yn over Kp. If n = 0, then we defined λn,i(x) = λ0,0(x)
to be x1/p if x ∈ Kp, 0 if x ̸∈ Kp.
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Definition

Given n+ 1 elements a0, . . . , an−1, an in a field K, denote that
the maximal splitting factor of

anX
n + an−1X

n−1 + · · ·+ a1X + a0

over K is
bnX

n + bn−1X
n−1 + · · ·+ b1X + b0,

where bn, . . . , b0 ∈ K, some of which could be zeros.

For each
0 ≤ i ≤ n, we define the i-th splitting coefficient to be

θn,i(a0, a1, . . . , an) := bi.
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Notation

Lθ,p,div := Ldiv ∪ {λn,i}n,i ∪ {θj}j .
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Theorem(FrobVFpe has QE)

For any e ∈ ω ∪ {∞}, let FrobVFpe be the theory of Frobenius
non-trivially valued fields of characteristic p with exponent of
imperfection e in

Lθ,p,div ∪ {IG}G a finite group,

where

K |= IG ⇔ “∃L/K such that Gal(L/K) ∼= G”.

Then FrobVFpe has quantifier elimination.
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Valuation Theoretic Embedding Lemma

Suppose that valued fields (E, VE) and (F, VF ) extend (L, VL)
and (M,VM ) resp. with E/L and F/M regular field extensions,
that F is PAC and |E|+-saturated in Ldiv with the exponent of
imperfection of E not more than that of F , and that there is a
field isomorphism Φ0 : L

sep → M sep and a commutative diagram

Gal(E)

res

��

Gal(F )
φoo

res

��
Gal(L) Gal(M),φ0

oo

where φ0 is induced by Φ0, φ is a homomorphism, and Φ0

restricts to an Ldiv-isomorphism from (L, VL) onto (M,VM ).
Then there exists an extension of Φ0 to a field embedding
Φ : Esep → F sep that induces φ with F/Φ(E) separable and
that Φ restricts to an Ldiv-embedding from (E, VE) into
(F, VF ). If furthermore φ is surjective, then F/Φ(E) is regular.
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Corollary(PACVFω
pe has QE)

For any e ∈ ω ∪ {∞}, the theory of ω-free pseudo-algebraically
closed non-trivially valued fields of characteristic p with
exponent of imperfection e in Lθ,p,div, denoted by PACVFω

pe ,
admits quantifier elimination.
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§3 The Denseness Property
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Kollár’s Density Theorem(Kollár, 2007)

Suppose that K is a PAC field, V a non-trivial valuation on
Kalg. Then for any geometrically integral K-variety X, X(K) is
V -dense in X(Kalg).
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Theorem(Bary-Soroker, 2012)

Let K be a PAC field, Y an absolutely irreducible smooth
K-variety with ring of regular functions R, f(X) ∈ R[X] a
separable monic polynomial, and P a partition of deg(f).
Assume that the induced embedding problem has a solution
whose orbit type is P . Then there exists a Zariski dense set
p ∈ Y (K) such that φp(f) is a separable polynomial of
factorization type P .
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Corollary

Let K be a pseudo-algebraically closed field, W a valuation ring
on Kalg, Y a geometrically integral smooth K-variety with its
ring of regular functions R, f(X) ∈ R[X] a separable monic
polynomial, P a partition of deg f . Assume that the induced
embedding problem has a solution whose orbit type is P . Then
there exists a W -dense subset p ∈ Y (K) of Y (Kalg) such that
φp(f) is a separable polynomial of factorization type P .
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Theorem

Suppose that (K,V ) |= PACVFω
pe for a natural number e < ∞

and that W is a valuation on Kalg extending V . Then every
Lθ,p,div-definable set in K is W -dense in an Ldiv-definable set
in Kalg with parameters from K. More precisely, if φ(xxx,aaa) is an
Lθ,p,div-formula with aaa ∈ Kn, then there exists an Ldiv-formula
φ̃(xxx,bbb) with bbb ∈ Km such that φ(K) is a W -dense subset of
φ̃
(
Kalg

)
.
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To be proved recently

PACVFω
pe

▽△ PACFω
pe .
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Thank you!
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