
Understanding Some Graph Parameters by

Infinite Model Theory

Yijia Chen
Fudan University

November 14, 2020 at Nankai

Joint work with Jörg Flum (Freiburg)



Spectrum of mathematics

combinatorics/graph theory geometry algebra logic

mainstream philosophyhighschool



0 – 1 Law

Theorem (Glebskij, Kogan, Liogon’kij, Talanov, 1969; Fagin, 1976)

Every graph property definable in first-order logic ( FO) is almost surely true or
almost surely false.

Corollary

Parity cannot be defined by FO.



Algorithmic-meta theorem

Theorem (Courcelle, 1990)

Every graph property definable in monadic second-order logic ( MSO) can be
decided in linear time on graphs of bounded tree-width.

Corollary

The 3-colorability problem can be decided in linear time on graphs of bounded
tree-width.



In most cases, logic provides a general framework encompassing a large
number of concrete problems, and graph theory provides proof methods
and algorithmic tools.



The forbidden subgraphs of small tree-depth

Theorem (Ding, 1992)

Let k ≥ 1. Then there are finitely many graphs H1, . . . , Hmk such that for any
graph G

G has a tree-depth at most k ⇐⇒ no Hi is an induced subgraph of G.

Remark
Tree-depth is a parameter which measures how close a graph is to a star.

I will sketch a new proof by the  Loś-Tarski Theorem from model theory.



Why the new logic proof might be interesting?

1. The original proof is purely combinatorial, using Higman’s Lemma on well
quasi-ordering.

2. The result is originally about finite graphs, and the combinatorial proof
does not apply to infinite graphs.

3. Our proof, thus the result, applies to infinite graphs, while our tool – the
 Loś-Tarski Theorem fails in the finite.

4. By the Completeness Theorem, we can compute the forbidden subgraphs
H1, . . . , Hmk from k by the logic proof. This is not directly implied by the
combinatorial proof.



What is (infinite) model theory?

Model theory is the study of classes of mathematical structures (e.g. groups,
fields, graphs, universes of set theory) from the perspective of mathematical
logic.

Model theory recognizes and is intimately concerned with a duality: it examines
semantical elements (meaning and truth) by means of syntactical elements
(formulas and proofs) of a corresponding language.

–Wikipedia



 Loś-Tarski Theorem

Theorem
Let K be a graph property, equivalently K is a class of graphs (finite and
infinite) that is closed under isomorphisms. Then the following are equivalent.

(i) K is definable in first-order logic and preserved under induced subgraphs,
which is a semantic property.

(ii) K is definable by a universal FO-sentence, which is a syntactic property.



Why the emphasis on infinite?

Most powerful tools of logic deal with infinite structures, but many deep results
in graph theory are about finite graphs.

It has been long argued that classical infinite model theory is not suitable for
finite structures, thus for (finite) combinatorics and computer science finite
model theory is the right model theory.



Plan

1. Vertex cover – forbidden induced subgraph characterization.

2. Tree-depth

2.1 forbidden induced subgraph characterization

2.2 MSO = FO, implying many NP-hard problems can be solved efficiently on
graphs of small tree-depth.

3. Shrub-depth

3.1 forbidden induced subgraph characterization

3.2 MSO = FO.



Vertex Cover



Vertex cover

Definition
Let G = (V,E) be a graph. Then a vertex cover is a vertex subset S ⊆ V such
that for every {u, v} ∈ E

{u, v} ∩ S 6= ∅.



1. The vertex cover problem is among the first problems discovered to be
NP-complete.

2. There are many exact/approximation/parameterized algorithms for the
vertex cover problem.

3. Vertex cover number has been studied as a graph parameter, i.e., the
minimum number of vertices which need to be removed to make a graph
edge-less.



Lovász’s result

László Lovász

Theorem
There are finitely many graphs H1, . . . , Hmk

such that

G has a vertex cover of size at most k

⇐⇒ no Hi is an induced subgraph of G.



The  Loś-Tarski Theorem



Induced subgraph

Let G and H be two graphs (finite or infinite). G is an induced subgraph of H
if V (G) ⊆ V (H) and

E(G) = E(H) ∩ V (G)× V (G).



Preservation under induced subgraphs

Definition
A first-order logic (FO) sentence ϕ is preserved under induced subgraphs if for
any graphs G and H where G is an induced subgraph of H

H |= ϕ implies G |= ϕ

Example

For any k ≥ 1,

∀x1 · · · ∀xk+1

∨
16i<j6k+1

xi = xj

is preserved under induced subgraphs.



Universal sentences

Definition
An FO-sentence ϕ is universal if

ϕ = ∀x1 · · · ∀xkψ,

where ψ is quantifier-free.

Theorem (trivial)

Any universal sentence is preserved under induced subgraphs.



The  Loś-Tarski Theorem

Theorem
Let ϕ be an FO-sentence which is preserved under induced subgraphs. Then
there is a universal sentence ψ such that

|= ϕ↔ ψ.

The semantic property of the closure of induced subgraphs is equivalent to the
syntactic property of being universal FO.



The failure of the  Loś-Tarski Theorem in finite

Theorem (Tait, 1959; C. and Flum, 2020)

There is an FO-sentence which is preserved under induced subgraphs in finite,
i.e., for any finite graphs G and H where G is an induced subgraph of H

H |= ϕ implies G |= ϕ,

such that ϕ is not equivalent to any universal sentence.

The proof of the  Loś-Tarski Theorem uses the Compactness Theorem, which
does not hold in finite.



k-vertex-cover by FO

Let

ϕk := ∃x1 · · · ∃xk∀u∀v

Euv → ∨
16i6k

(u = xi ∨ v = xi)

.
Then for any graph G

G has a vertex cover of size at most k ⇐⇒ G |= ϕk.

ϕk is not universal.



Preservation of k-vertex-cover

Theorem (trivial)

Let G be a graph with a vertex cover of size at most k. Then any induced
subgraph of G has a vertex cover of size at most k as well.



What we have done

1. The k-vertex-cover problem can be defined by an FO-sentence ϕk (not
universal).

2. The k-vertex-cover problem is closed under induced subgraphs.

3. Can we use the  Loś-Tarski Theorem?

No, graphs are finite graphs.



From finite to infinite

We allow graph G = (V,E) to have infinite V , and infinite E as well.

Definition
Let k ≥ 1 and G = (V,E) be a graph (finite or infinite). Then a vertex cover is
a vertex subset S ⊆ V such that for every {u, v} ∈ E

{u, v} ∩ S 6= ∅.

For any graph G, finite or infinite,

G has a vertex cover of size at most k

⇐⇒ G |= ∃x1 · · · ∃xk∀u∀v

Euv → ∨
16i6k

(
u = xi ∨ v = xi

) .

The k-vertex-cover problem on finite and infinite graphs is preserved under
induced subgraphs.



Applying  Loś-Tarski Theorem

Theorem (C. and Flum, 2020)

For any k ≥ 1, there is a universal FO-sentence ψk such that for any graph G

G has a vertex cover of size at most k ⇐⇒ G |= ψk.

Compared to:

Theorem (Lovász)

There are finitely many graphs H1, . . . , Hmk such that

G has a vertex cover of size at most k ⇐⇒ no Hi is a subgraph of G.



From universal sentence to forbidden induced subgraphs

Lemma
For every universal sentence ϕ there are graphs H1, . . . , Hs such that for any
graph G

G |= ϕ ⇐⇒ no Hi is an induced subgraph of G

Proof.

1. ϕ can be written as ∧
i∈I

¬∃x1 · · · ∃xm
∧
j∈Ji

γij .

2. For every i ∈ I there are graphs Hi1, . . . , Hi`i such that for any graph G

G |= ¬∃x1 · · · ∃xm
∧
j∈Ji

γij ⇐⇒ no Hij is an induced subgraph of G.



Logic proof of Lovász’s result

1. There is a universal sentence ϕk such that for any graph G

G has a vertex cover of size at most k ⇐⇒ G |= ψk.

2. There are graphs H1, . . . , Hsk such that for any graph G

G has a vertex cover of size at most k

⇐⇒ no Hi is an induced subgraph of G



Recap

1. Generalize vertex cover to infinite graphs.

2. The k-vertex-cover problem is definable in FO for finite and infinite graphs.

3. The k-vertex-cover problem is preserved under induced subgraphs.

4. By the  Los-Tarski Theorem there is a universal sentence which defines the
k-vertex-cover problem.

5. Any characterization by a universal sentence is equivalent to a
characterization of forbidden induced subgraphs.



A meta-theorem

Theorem (C. and Flum, 2020)

Let K be a class of graphs (finite and infinite) such that

1. K is definable in FO,

2. for every G ∈ K and H an induced subgraph of G, then H ∈ K,

Then there are finitely many H1, . . . , Hm, all finite graphs, such that for any
graph G

G ∈ K ⇐⇒ no Hi is an induced subgraph of G.



Tree-depth



Tree-depth

1. Tree-depth was introduced by J. Nešeťril and P. Ossona de Mendez in the
theory of graphs of bounded expansion.

2. Tree-depth is equivalent to vertex ranking, ordered coloring, and
elimination order.

3. Tree-depth measures how close a graph is to a star, similar as that
tree-width measures how close a graph is to a tree.

4. Graphs of small tree-depth often admit fast parallel algorithms, similar as
graphs of small tree-width admit fast sequential algorithms.



Tree-depth

Definition
Let G = (V,E) be a graph (finite). Then its tree-depth is

td(G) :=


1 if |V | = 1

1 +minv∈V td(G \ v) if V | ≥ 2 and G is connected

max C a connected
component of G

td(C) if G is not connected.



Recall

Theorem (Ding, 1992)

Let k ≥ 1. Then there are graphs H1, . . . , Hmk such that for any graph G

td(G) 6 k ⇐⇒ no Hi is an induced subgraph of G.

Theorem (C. and Flum, 2020)

Let K be a class of graphs (finite and infinite) such that

1. K is definable in FO,

2. for every G ∈ K and H an induced subgraph of G, then H ∈ K,

Then there are finitely many H1, . . . , Hm, all finite graphs, such that for any
graph G

G ∈ K ⇐⇒ no Hi is an induced subgraph of G.



Logic proof of Ding’s result

1. Generalize tree-depth to infinite graphs.

2. Define the class K of graphs G, finite and infinite, with td(G) 6 k in FO.

3. Prove that K is preserved under induced subgraphs.

4. Apply our meta-theorem.



Tree-depth of infinite graphs

We use exactly the same definition.

Definition
Let G = (V,E) be a graph (finite or infinite). Then its tree-depth is

td(G) :=


1 if |V | = 1

1 +minv∈V td(G \ v) if V | ≥ 2 and G is connected

max C a connected
component of G

td(C) if G is not connected.

There are infinite graphs G whose td(G) is not defined.



MSO on graphs of bounded tree-depth

Let K be a class of graphs of bounded tree-depth.

Theorem (Elberfeld, Grohe, and T. Tantau, 2016)

Every sentence in monadic second-order logic ( MSO) is equivalent to an
FO-sentence on K.

Corollary

For graphs in K the 3-colorability problem can be defined in FO, thus is
decidable by AC0-circuits, or equivalently solvable in constant parallel time.



Monadic second-order logic

MSO is the restriction of second-order logic in which every second-order
variable is a set variable.

A graph G is 3-colorable if and only if

G |= ∃X1∃X2∃X3

 ∀u ∨
16i63

Xiu ∧ ∀u
∧

16i<j63

¬(Xiu ∧Xju)

∧∀u∀v
(
Euv →

∧
16i63

¬(Xiu ∧Xiv)
))

.

MSO can also characterize Sat, Independent-Set, Dominating-Set, etc.

On strings and trees the expressive power of MSO coincides with automata.



Ordered graphs

Let K be a class of graphs (finite or infinite) of bounded tree-depth.

Theorem
For any MSO-sentence ϕ there is an FO-sentence ψ such that for any G ∈ K
and an ordering < on G

G |= ϕ ⇐⇒ (G,<) |= ψ.

The ordering < is necessary to define a tree T of constant depth from G, and
then we construct the FO-sentence to “simulate an automata corresponding to
the MSO-sentence ϕ” on T .



Ordered graphs (cont’d)

Theorem
For any MSO-sentence ϕ there is an FO-sentence ψ such that for any G ∈ K
and an ordering < on G

G |= ϕ ⇐⇒ (G,<) |= ψ.

Corollary

For any MSO-sentence ϕ there are FO-sentences ψ(<1) and ψ(<2) such that
for any graph G ∈ K and any two orderings <1 and <2

G |= ϕ ⇐⇒ (G,<1) |= ψ(<1) ⇐⇒ (G,<2) |= ψ(<2).

In particular
(G,<1, <2) |= ψ(<1)→ ψ(<2)



Craig’s Interpolation Theorem

Theorem
Let ϕ and ψ be two FO-sentences with

|= ϕ→ ψ. (1)

Then there is an FO-sentence θ which only contains symbols appearing both in
ϕ and ψ such that

|= ϕ→ θ and |= θ → ψ.

Remark
It is crucial for Craig’s Interpolation Theorem that (1) refers to all finite and
infinite structures.



Recall

Corollary

For any MSO-sentence ϕ there are FO-sentences ψ(<1) and ψ(<2) such that
for any G, finite or infinite, with td(G) 6 k

(G,<1, <2) |= ψ(<1)→ ψ(<2)

By Craig’s Interpolation Theorem and the FO definability of td(G) 6 k

Corollary

For any MSO-formula ϕ there is an FO-sentence ψ (without <) such that for
any graph G ∈ K

G |= ϕ ⇐⇒ G |= ψ.



Shrub-depth



Shrub-depth is a graph parameter introduced by R. Ganian, P. Hlinĕný, J.
Nesetril, J. Obdrzálek, P. Ossona de Mendez, and R. Ramadurai as the
“tree-depth of dense graphs.”



Lemma (trivial)

Let G = (V,E) be a (finite) graph with td(G) 6 k. Then

|E| 6 (k − 1)(|V | − 1).

That is, G is sparse.

A graph G = (V,E) is sparse if |E| = O(|V |).

Remark
Most graph parameters lead to sparse graphs, one notable exception is
clique-width.

Clique-width can be viewed as “tree-width of dense graphs.”



Shrub

Shrubs are perennial woody plants, and
therefore have persistent woody stems
above ground (compare with herba-
ceous plants). Usually shrubs are dis-
tinguished from trees by their height
and multiple stems.

– Wikipedia



dense shrub sparse tree

1. First we define the class Tree[m, d] of trees of depth d with m labels.

2. Using a signature D any T ∈ Tree[m, d] can be transferred to a shrub G.



Tree[m, d]

Tree[m, d] is the class of rooted trees with m labels and of depth d:

1. every root-to-leaf path has length d,

2. every leaf t is labelled with a color in c(t) ∈ [m].

Example

A rooted tree in Tree[3, 2].

•

•

• •

•

• • •

•

•

•

• •

•

• • • •



Tree model

Definition
A tree-model of m labels and depth d of a graph G is a pair (T,D) of a rooted
tree T ∈ Tree[m, d] and a signature

D ⊆ {1, 2, . . . ,m}2 × {2, 4, . . . , 2 · d}

for some h ≥ d such that

1. for any i, j ∈ [m] and s ∈ [d] if (i, j, s) ∈ D, then (j, i, s) ∈ D,

2. V (G) = leaves(T ),

3. E(G) =
{
{u, v}

∣∣ u, v ∈ V (G) and (c(u), c(v), distT (u, v)) ∈ D
}

.



Examples

•

•

u1 v1

•

u2 v2

•

u3 v3

•

u4 v4

•

u5 v5

D :=
{
(•, •, 2), (•, •, 4)

}
u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

complete bipartite graph K5,5

D :=
{
(•, •, 4)

}
u1 u2 u3 u4 u5

v1 v2 v3 v4 v5

almost complete bipartite graph B5,5



Shrub-depth

Definition
TMm(d) is the class of graphs with a tree-model in Tree[m, d].

Definition
Let K be a class of graphs. Then K has shrub-depth d, if

1. K ⊆ TMm(d) for for some m ∈ N,

2. K 6⊆ TMm′(d− 1) for for every m′ ∈ N.



Examples

1. The class of complete graphs has shrub-depth 1.

2. The class of complete bipartite graphs Kn,n has shrub-depth 1.

3. The class of almost complete bipartite graphs Bn,n has shrub-depth 2.

4. Tree[1, d] has shrub-depth d.



Closure under induced subgraphs

Lemma (trivial)

Let G ∈ TMm(d) and H be an induced subgraph of G. Then H ∈ TMm(d),
too.



Let m, d ≥ 1.

Theorem (Gajarský et al., 2019)

There are graphs H1, . . . , H`m,d such that for any graph G

G ∈ TMm(d) ⇐⇒ no Hi is an induced subgraph of G.

Theorem (Gajarský and Hlinĕný, 2015)

MSO = FO on TMm(d).



Our logic approach

1. Generalize Tree[m, d] and TMm(d) to infinite trees and infinite graphs.

2. We apply our meta-theorem to prove the forbidden induced subgraph
characterization of TMm(d). But this requires to show TMm(d) is
definable in FO.

3. We show that MSO = FO on TMm(d). A key step of the proof is that
TMm(d) can be defined approximately in FO.

4. We prove that TMm(d) is definable in MSO. Then combined with 3, we
conclude that TMm(d) can be defined exactly in FO.



Conclusions

1. It has been long argued that classical infinite model theory is not suitable
for finite structures, thus for (finite) combinatorics and computer science
finite model theory is the right model theory.

Our findings show that this might not be one hundred percent correct.

2. Our logic proofs of those combinatorial results use much less
combinatorics than the original proofs.

Pros: Reveal a certain “meta-structure” of those problems, and yield computable
characterizations by the completeness theorem.

Cons: Provide no explicit combinatorial constructions, the bounds of those
characterizations directly derived from logic are very bad, sometimes even
not recursive [C. and Flum, 2020].



Thank You!
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