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Terminology

AND-OR trees

An AND-OR tree is a tree whose root is labeled by AND and
nodes are level-by-level labeled by OR or AND alternatively except
for leaves.

Each leaf is assigned Boolean value 1 or 0, where 1 denotes true
and 0 denotes false.
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Terminology

α-β pruning algorithms

An α-β pruning algorithm satisfies
the following conditions.

When an algorithm knows a
child of an AND-node has
value 0, it recognizes that the
value of AND-node is 0 without
probing other children (α-cut).

When an algorithm know a
child of an OR-node has value
1, it recognizes that the value
of OR-node is 1 without
probing other children (β-cut).

α-β pruning algorithm A = 1243.

C (A, ω): the number of leaves
checked by A under assignment ω.
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Terminology

Distributions on assignments

Let d be a (probability) distribution on the set Ω of assignments,
the expected cost of algorithm A under the distribution d is
defined by

C (A, d) :=
∑
ω∈Ω

C (A, ω)d(ω).

Let D be the set of distributions and A the set of deterministic
algorithms computing tree T .

The distributional complexity computing tree T is defined by

max
d∈D

min
A∈A

C (A, d).

A distribution d is said to be an eigen-distribution if

min
A∈A

C (A, d) = max
d ′∈D

min
A∈A

C (A, d ′).
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Backgrounds

Background

Saks and Wigderson (1986) showed that the randomized
complexity of n-branching trees with height h is

Θ

((
n−1+

√
n2+14n+1
4

)h)
.

Yao’s Principle (1977) implies that the randomized
complexity equals to the distributional complexity.

min
AR∈AR

max
ω

C (AR , ω)︸ ︷︷ ︸
Randomized complexity

= max
d

min
A∈A

C (A, d).︸ ︷︷ ︸
Distributional complexity

where AR denotes the class of probability distribution over the
family of deterministic algorithms.
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Backgrounds

IID

• D:= the set of all distributions
• ID:= the set of all independent distributions.
• IID:= the set of all independent identical distributions.
Let Ω be the set of assignments for a given tree. We say
d : Ω→ [0, 1] is an independent distribution (denoted by d ∈ ID)
if there exist pi ’s (the probability of the i-th leaf that has value 0)
such that for any ω ∈ Ω,

d(ω) =
∏

{i : ω(i)=0}

pi

∏
{i : ω(i)=1}

(1− pi ).

We say d ∈ IID if d is an ID satisfying p1 = p2 = · · · = pn.
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T h
2

eigen-distribution is unique (D) d ∈ ID → d ∈ IID

T h
2 • Liu-Tanaka (2007) • Claimed by Liu-Tanaka (2007)

• False w.r.t. only directional-alg • Justified by Suzuki and Niida

by Suzuki and Nakamura (2013) (2015)

Question

How about multi-branching trees, especially T h
n , Balanced

Multibranching trees?
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The Eigen-distribution for balanced multi-branching trees

A tree is balanced if each nonterminal node at the same level has
the same number of children.

Note that we do not require that nodes from different levels have
the same number of children

The n-branching tree with height h is denoted by T h
n .
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The Eigen-distribution for balanced multi-branching trees

T h
n (Balanced Multi-branching trees)

eigen-distribution is unique (D) d ∈ ID → d ∈ IID

T h
2 • Liu-Tanaka (2007) • Claimed by Liu-Tanaka (2007)

• False w.r.t. only directional-alg • Justified by Suzuki and Niida

by Suzuki and Nakamura (2013) (2015)

T h
n • Holds w.r.t. deterministic-alg • Holds if we restrict 0 < r < 1

• by Peng et al. (2016) by Peng et al (2017)

Remark: r is the probability of root being 0.
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The Eigen-distribution for balanced multi-branching trees

Let ID(r) denote the set of independent distributions which induce
that the probability of the root having value 0 is r .

Theorem (Peng et al. (2017))

For any balanced multi-branching AND-OR tree T , we fix
δ ∈ ID(r) and 0 < r < 1. If the following equation holds,

min
A:depth

C (A, δ) = max
d∈ID(r)

min
A:depth

C (A, d),

then δ ∈ IID.
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The Eigen-distribution for balanced multi-branching trees

We can show the following conclusion which is a generalization of
Suzuki-NIida’s result in Suzuki (2015).

Theorem (1)

Suppose that T is an n-branching AND-OR tree (OR-AND tree).
Let r ∈ {0, 1}, d0 be the IID such that each leaf has the
probability 1− r . Then,
• in the case where the height of T is even, denoted by h = 2k,
min
A

C (A, d0) = nk .

• In the case where h is odd, denoted by 2k + 1,

min
A

C (A, d0) = nk if we consider AND-OR tree and r = 0, or

we consider OR-AND tree and r = 1.

min
A

C (A, d0) = nk+1, otherwise.

Weiguang Peng The Eigen distribution for multi-branching Boolean trees on ID



Introduction The Eigen-distribution for multi-branching trees under ID Optimal algorithms for multi-branching trees under ID Future Research

The Eigen-distribution for balanced multi-branching trees

ID implies IID

Theorem (2019)

For any n-branching tree T , suppose that d1 is an ID such that the
following holds.

min
A

C (A, δ) = max
d

min
A

C (A, d),

where d over all IDs and A over all depth-first algorithms. Then δ
is an IID.

Sketch of proof: This theorem holds in the case 0 < r < 1 by
Peng et al. (2017), the left work is to investigate the case r = 0
and r = 1. It is enough to show the following claim.
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The Eigen-distribution for balanced multi-branching trees

Claim: When r = 0 or 1, there exists r0 such that

min
A

C (A, δ) < max
d∈IDr0

min
A

C (A, d),

where δ ∈ IID such that probability of the root is r , and d over all
IDs such that the probability of the root is r0.
Proof of Claim: Let x be the probability of each leaf having
value 0, rx be the probability of the root having value 0 with
respect to x . Given an d ∈ IID, for any depth-first algorithm A, we
get the same expected cost. i.e., min

A0

C (A0, d) = C (A, d).

Let x = 1/2, it is clear that for any depth-first algorithm A,

C (A, d1/2) ≤ max
d∈IDr1/2

min
A

C (A, d). (∗)
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The Eigen-distribution for balanced multi-branching trees

We also can show the following conclusions:
• In the case h = 2k , C (A, dr1/2

) > nk ,
• In the case where h = 2k + 1,

C (A, dr1/2
) > nk if we consider AND-OR tree and i = 0, or we

consider OR-AND tree and i = 1.

C (A, dr1/2
) > nk+1, otherwise.

By Theorem 1, min
A

C (A, δ) < C (A, dr1/2
) holds. we complete the

proof of the claim.
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The Eigen-distribution for balanced multi-branching trees

Non-depth-first-algorithms

With the condition 0 < r < 1, Suzuki(2018) extended our results
to the case where non-depth-first algorithms are taken into
consideration.

Definition (Depth-first-algorithms)

if an algorithm evaluates the value of one subtree, it will never
evaluate the others until it completes the current one.

Otherwise, it is called non-depth-first-algorithm.
Thus, the above theorem still holds with respect to non-depth-first
algorithms.
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The Eigen-distribution for balanced multi-branching trees

Non-depth-first-algorithms
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The Eigen-distribution for weighted trees

Weighted trees

Definition (Okisaka et al. 2017)

Let A be an algorithm, ω an assignment, ]1(A, ω) (resp., ]0(A, ω))
denote the number of leaves probed by A and assigned 1 (resp., 0)
on ω. For any positive real numbers a, b,

C (A, ω; a, b) := a · ]1(A, ω) + b · ]0(A, ω),

is called a generalized cost weighted with (a, b). Obviously,
C (A, ω) = C (A, ω; 1, 1).
For a distribution d on Ω, the expected generalized cost
C (A, d ; a, b) :=

∑
ω∈Ω d(ω) ·C (A, ω; a, b). We may say that T is a

tree weighted by (a, b) if we consider the generalized cost.

Note that: for weighted trees, the weight not dependent on the
assigned value.
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The Eigen-distribution for weighted trees

We consider an IID on T 1
n (a, b) such that each leaf is assigned 0

with probability x . The expected cost is denoted by C (x , a, b).

Lemma (Technical Lemma)

Suppose that the distribution on T 1
n weighted with (a, b) is an IID

with all leaves assigned probability x. Then

(1) p(x) is a strictly increasing function of x.

(2)
C (x , a, b)

p(x)
is strictly decreasing.

(3)
C ′(x , a, b)

p′(x)
is strictly decreasing.
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The Eigen-distribution for weighted trees

Theorem (Peng et al. 2019)

For any balanced multi-branching AND-OR tree T weighted by
(a, b), we fix δ ∈ ID(r) and 0 < r < 1. If the following equation
holds,

min
A:depth

C (A, δ, a, b) = max
d∈ID(r)

min
A:depth

C (A, d , a, b),

then δ ∈ IID.
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DIRd is optimal among all depth-first algorithms

Notations

For any non-terminal node σ in a given T , Tσ denotes the subtree
of T rooted from σ.
For a node σ with n children, we denote Tσ∗i (1 ≤ i ≤ n) the i-th
subtree under the node of σ from left to right, and particularly the
subtrees under the root λ is simplified as Ti instead of Tλ∗i .

By qi , we denote the probability of the root of Ti being 0 with
respect to a given distribution d .

An algorithm A is called optimal with respect to d if for any
algorithm A′, we have C (A, d) ≤ C (A′, d).
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DIRd is optimal among all depth-first algorithms

DIRd for uniform binary trees

Definition (1)

For any uniform binary tree T and d ∈ ID on T , the depth-first
directional algorithm DIRd is defined inductively as follows. If σ is
a leaf then it is trivial. At the induction case, for any non-terminal
node σ, let σ ∗ 1 and σ ∗ 2 be the children of σ, and assume
DIRdσ∗i (i = 1, 2) for subtrees Tσ∗i are defined.

(1) In the case that σ is labeled ∧, DIRdσ is a concatenation
DIRdσ∗1 and DIRdσ∗2 i.e., DIRdσ := DIRdσ∗1 · DIRdσ∗2 if
Cσ∗1(DIRdσ∗1

, dσ∗1)

qσ∗1
≤ Cσ∗2(DIRdσ∗2

, dσ∗2)

qσ∗2
, otherwise

DIRdσ := DIRdσ∗2 · DIRdσ∗1 .

(2) In the case σ is labeled ∨, DIRdσ := DIRdσ∗1 · DIRdσ∗2 if
Cσ∗1(DIRdσ∗1

, dσ∗1)

1−qσ∗1
≤ Cσ∗2(DIRdσ∗2

, dσ∗2)

1−qσ∗2
, otherwise

DIRdσ := DIRdσ∗2 · DIRdσ∗1 .
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DIRd is optimal among all depth-first algorithms

Idea of construction

If
C1(A1, d1)+(1−q1)·C2(A2, d2) ≤ C2(A2, d2)+(1−q2)·C1(A1, d1),

i .e.
C1(A1, d1)

q1
≤ C2(A2, d2)

q2
,

where qi is the probability of the root of i-th tree being 0,
then, DIRd = A1 · A2
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DIRd is optimal among all depth-first algorithms

Optimal depth-first algorithms

Theorem (2017)

For any uniform binary tree T and d ∈ ID, if A is any depth-first
algorithm, then C (A, d) ≥ C (DIRd , d), i.e., DIRd is optimal
among all the depth-first algorithms.

Proof. We prove this by induction on height h. The base case is
trivial. At the induction step, let T be a uniform binary tree with
height h + 1.
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DIRd is optimal among all depth-first algorithms

Suppose that DIRdi is an optimal algorithm for each subtree Ti

with height h. For any depth-first algorithm A, if A evaluates T1

first, then

C (A, d) = C1(A1, d1) + (
∑

ω1∈Ω1
h

d1(ω1)) · C2(Aω1 , d2)

where A1 is the algorithm of A in T1 and Aω1 is the algorithm of A
in T2 depending on the assignment
Ωi
h := {ω1 ∈ Ωh | ω1 assigns i to T1}.
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DIRd is optimal among all depth-first algorithms

By induction hypothesis, we take algorithms DIRd1 and DIRd2 ,
which satisfy that
C (A, d) ≥ Cλ∗1(DIRd1 , d1) + (1− q1)Cλ∗2(DIRd2 , d2).
Let A′1 = DIRd1 · DIRd2 , then clearly C (A, d) ≥ C (A′1, d).

Using the similar arguments as above, if A evaluates T2 first, we
can get algorithm A′2 = DIRd2 · DIRd1 . Thus, C (A, d) ≥ C (A′2, d).

If
Cλ∗1(DIRd1

,d1)

q1
≤ Cλ∗2(DIRd2

,d2)

q2
, then

C (A′1, d) = Cλ∗1(DIRd1 , d1) + (1− q1)Cλ∗2(DIRd2 , d2) =
C (A′2, d)− (q1Cλ∗2(DIRd2 , d2)− q2Cλ∗1(DIRd1 , d1)) ≤ C (A′2, d).

By Definition 1, DIRd is A′1 if
Cλ∗1(Ad1

,d1)

q1
≤ Cλ∗2(Ad2

,d2)

q2
, otherwise

A′2. Clearly, DIRd is optimal among all the depth-first
algorithms.
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DIRd is optimal among all depth-first algorithms

non-directional algorithms

Directional algorithms: there are many E 1 -distributions w.r.t.
the set of all directional algorithms.
An algorithm is called non-directional if its order of searching
leaves depends on the query history.

Let’s consider a directional algorithm A=1234. We define a
non-directional algorithm A′ = 1̄23̂4 as follows: If the first leaf is
labeled by 1, exchange the order of 3 and 4. Otherwise, it is the
same as A.
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DIRd is optimal among all non-depth-first algorithms

The above results can generalized to weighted trees:

Theorem (Peng et al)

For any multi-branching weighted tree, a directional algorithm
w.r.t. ID is optimal.

Proof.

We show this theorem by induction on height h.

Theorem

For any uniform binary tree T and d ∈ ID, DIRd is optimal among
all the non-depth-first algorithms.
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Future research
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Thank you for your attention!
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