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Foreword

Set-theoretic topology:
set theory—general topology—independent (ZFC) results.
Selection principle:

(1) selecting

(2) describe covering properties

(3) measure- and category-theoretic properties

(4) local properties in topological spaces

(5) function spaces
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Example 1

Definition (Borel 1919)

X ⊆ R, strong measure zero :
∀(εn > 0)∃ interval |In| < εn, X ⊆

⋃
In.

Conjecture (Borel conjecture)

Every strong measure zero set is countable.

Answer:
Sierpinski 1928: No, Under CH.
Laver 1976: Yes, In Laver model.
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Example 1

Definition (Rothberger 1938)

Topology space, Rothberger space:
∀open cover Un, ∃ Un ∈ Un, {Un} is open cover.

Theorem (Fremlin-Miller 1988)

X ⊆ R, strong measure zero ⇐⇒
∀ compatible topology τ , (X, τ) is Rothberger.
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Example 2

Definition (Menger 1924)

Metric space, Menger basis property:
∀basis B, ∃ subcover {Un}, d(Un)→ 0.

Theorem (Hurewicz 1926)

Menger basis property ⇐⇒
∀open cover Un, ∃ finite Un ⊆ Un, {

⋃
Un} open cover.
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Example 3

Definition (Franklin 1965)

Topology space X, Fréchet-Urysohn space :
∀A ⊆ X, A = [A]seq = {x ∈ X : ∃{an} → x, an ∈ A}.

Tychonoff space X,
C(X): continuous functions f : X → R,
pointwise convergence topology.

Question (Gerlits-Nagy 1982)

When C(X) is Fréchet-Urysohn space?
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When C(X) is Fréchet-Urysohn space?

J. He Square of Menger groups



Classical Selection principle Selection principle in groups Main results

Example 3

Definition (Gerlits-Nagy, 1982)

(1) Open cover U , Ω-cover: ∀ finite F ⊆ X, ∃U ∈ U , F ⊆ U .

(2) Open cover U , Γ-cover: ∀x ∈ X, {U ∈ U : x 6∈ U} finite.

(3) Topology space X, γ-space: ∀Ω-cover U ∃Γ-cover V ⊆ U .

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn ⇐⇒ X is γ-space.
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Modern definition

Definition (Scheepers 1996)

Let A and B.

(1) S1(A,B): ∀〈Un〉 ∈ AN ∃Un ∈ Un, {Un} ∈ B.

(2) Sfin(A,B): ∀〈Un〉 ∈ AN ∃ finite Un ⊆ Un,
⋃
Un ∈ B.

(3) Ufin(A,B): ∀〈Un〉 ∈ AN, ∃ finite Un ⊆ Un, {
⋃
Un} ∈ B.

(4)

(
A
B

)
: ∀U ∈ A ∃V ⊆ U ,V ∈ B.
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Explained by picture

Figure: S1(A,B)
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Scheepers Diagram

Π(A,B) , Π ∈ {S1,Sfin,Ufin,
( )
}, A,B ∈ {O,Γ,Ω}.

Figure: Scheepers Diagram
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Product

Theorem (Todorćević 1995)

∃X,Y ∈ S1(Ω,Γ), X × Y is not Lindelöf.

Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, ∃X,Y ⊆ R, S1(Ω,Γ), X × Y 6∈ Sfin(O,O).

Theorem (Zdomskyy 2018)

In Miller model: ∀X,Y ⊆ R,Sfin(O,O) =⇒ X × Y ∈ Sfin(O,O).

Theorem (Zdomskyy 2019)

In Laver model: ∀X,Y ⊆ R,Ufin(O,Γ) =⇒ X × Y ∈ Ufin(O,Γ).
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Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, ∃X,Y ⊆ R, S1(Ω,Γ), X × Y 6∈ Sfin(O,O).

Theorem (Zdomskyy 2018)

In Miller model: ∀X,Y ⊆ R,Sfin(O,O) =⇒ X × Y ∈ Sfin(O,O).

Theorem (Zdomskyy 2019)

In Laver model: ∀X,Y ⊆ R,Ufin(O,Γ) =⇒ X × Y ∈ Ufin(O,Γ).

J. He Square of Menger groups



Classical Selection principle Selection principle in groups Main results

Product

Theorem (Todorćević 1995)
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Groups

Definition ( M. Tkačenko 1998)

Topological group G, o-bounded:
∀Un 3 e, ∃ finite Fn, G =

⋃
n∈ω Fn ∗ Un.

Problem ( M. Tkačenko 1998)

Let G, H be o-bounded groups. Is the product G×H o-bounded?

J. He Square of Menger groups



Classical Selection principle Selection principle in groups Main results

Groups

Definition ( M. Tkačenko 1998)

Topological group G, o-bounded:
∀Un 3 e, ∃ finite Fn, G =

⋃
n∈ω Fn ∗ Un.

Problem ( M. Tkačenko 1998)
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Modern definition

(G, ∗, e, τ). Ne: all open neighborhoods of e.
U ∈ Ne, g ∈ G, let g ∗ U := {g ∗ u : u ∈ U}.
Onbd: covers of the form {g ∗ U : g ∈ G}, for U ∈ Ne.

Definition

Assume that (G, ∗, e, τ) is a topological group.
G is Menger-bounded: Sfin(Onbd,O).

Fact: Sfin(O,O) =⇒ Sfin(Onbd,O).
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1
2-answer

Theorem (Krawczyk-Michalewski 2003)

CH. ∃ Menger-bounded group G,H ≤ Rω, G×H is not
Menger-bounded.

Theorem (Machura-Shelah-Tsaban 2007)

CH. ∃ Menger-bounded group G ≤ Zω, G2 is not
Menger-bounded.

Theorem (Mildenberger 2008)

r ≥ d. ∀k, ∃ G ≤ Zω,Gk is Menger-bounded, Gk+1 is not
Menger-bounded.
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Remain open

Problem ( M. Tkačenko )

Is it consistent that for each Menger-bounded G, H, G×H
Menger-bounded?

Problem (Machura-Shelah-Tsaban )

Is it consistent that for each Menger-bounded group G, G2 is
Menger-bounded?

Problem (Mildenberger)

Does u < g imply that for each Menger-bounded group G ≤ Zω,
G2 is Menger-bounded?

J. He Square of Menger groups



Classical Selection principle Selection principle in groups Main results

Remain open

Problem ( M. Tkačenko )
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Our motivation

Question (P. Szewczak, B. Tsaban and L. Zdomskky 2018)

Is there, consistently, a Menger topological group whose square is
not Menger?
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Main results

Theorem (He, Peng and Wu 2020)

(1) cov(M) = c. For each n ≥ 1, there is a subgroup of ZN such
that Gn is Menger but Gn+1 is not Menger-bounded.

(2) For each n ≥ 1, there is a subgroup of Rω1 such that Gn is
Menger but Gn+1 is not Lindelöf.

(3) cov(M) = d = cf(d). For each n ≥ 1, there is a subgroup of
R such that Gn is Menger but Gn+1 is not Menger.

Corollary

1 Menger group square problem is independent with ZFC in the
metrizable sense.

2 Menger group square problem is negative in nonmetrizable
sense.

J. He Square of Menger groups
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(3) cov(M) = d = cf(d). For each n ≥ 1, there is a subgroup of
R such that Gn is Menger but Gn+1 is not Menger.

Corollary

1 Menger group square problem is independent with ZFC in the
metrizable sense.

2 Menger group square problem is negative in nonmetrizable
sense.

J. He Square of Menger groups



Classical Selection principle Selection principle in groups Main results

Main results

Theorem (He, Peng and Wu 2020)

(1) cov(M) = c. For each n ≥ 1, there is a subgroup of ZN such
that Gn is Menger but Gn+1 is not Menger-bounded.

(2) For each n ≥ 1, there is a subgroup of Rω1 such that Gn is
Menger but Gn+1 is not Lindelöf.
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Preliminary: Cardinal invariants

For any f, g ∈ NN, f ≤∗ g if f(n) ≤ g(n) for all but finitely
many n.

D ⊆ NN is a dominating family if for each f ∈ NN there exists
g ∈ D such that f ≤∗ g. d is the least cardinality among all
dominating families.

cov(M) is the least cardinality among all families of comeager
subsets of NN which has empty intersection.

Theorem (Hurewicz )

A set of reals X has Menger’s property if, and only if, no
continuous image of X in NN is dominating.

J. He Square of Menger groups
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subsets of NN which has empty intersection.

Theorem (Hurewicz )

A set of reals X has Menger’s property if, and only if, no
continuous image of X in NN is dominating.
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Preliminary: Walks on ordinal

Definition

[ω1]2 is the set of all subset of ω1 of size 2.

osc : [ω1]2 → N is a function. Denote oscα : α→ N by
oscα(ξ) = osc({α, ξ}) for ξ < α < ω1.

T = {oscα|β : β ≤ α} and
levelT (β) = {ocsα|β : β ≤ α < ω1} for any β < ω1.

Fact: For any β < ω1, levelT (β) is countable.
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Preliminary: General topology

Definition

N is the one-point compactification N ∪ {∞} of N with
discrete topology.

N↑N is the set of all increasing functions f : N→ N.

Q∞ is the set of all all increasing functions f : N→ N with
{∞} ∈ rang(f).

N↑N = N↑N \Q∞.

Fact:

R \Q is homeomorphic to N↑N, with the topology inherited

from the product topology of N↑N.

Q∞ is a countable dense subset of N↑N.

For any countable dense subset Q ⊆ N↑N, there is a

homeomorphism h : N↑N → N↑N such that h(Q) = Q∞.
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Preliminary: Linear algebra

Definition

View R as a vector space over Q. spanQ(X) is the vector
subspace generated by X for any X ⊆ R.

For any {θα : α < ω1} ⊆ R and x ∈ spanQ({θα : α < ω1}),
the height of x in {θα : α < ω1} is the least α such that
x ∈ spanQ({θξ : ξ ≤ α}).

A collection of real numbers is rationally independent if none
of them can be written as a linear combination of the other
numbers in the collection with rational coefficients.

A subset S of an abelian group is linearly independent (over
Z) if the only linear combination of these elements that is
equal to zero is trivial.
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Construction of subgroup of Rω1

Recall Peng-Wu’s construction of a group G such that Gn is
Lindelöf but Gn+1 is not Lindelöf.
Fix n.

Construct h : [0, 1)→ Q and a sequences of comeager set
{Xm ⊆ Rm : n ≤ m ∈ N}.
Choose {θα : α < ω1} such that any m ≥ n and sequence
xi ∈ spanQ({θα : α < ω1}), i < m of elements with
increasing heights, (x0, x1, · · · , xm−1) ∈ Xm.

Define {wβ : β < ω1} ⊆ Rω1 as follows:

wβ(ξ) =

{
h(frac(θξosc(ξ, β) + θβ) : ξ < β

0 : ξ ≥ β

and G be the subgroup of (Rω1 ,+) which is generated by
{wβ : β < ω1}.
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When the group is Lindelöf ?

In fact, h is continuous on a comeager set D.

Definition

Let Y = {θα : α < ω1} ⊆ R. We call Y reads (h, ~X) if

(1) Y is a set of irrational real numbers.

(2) Y ∪ {1} is rationally independent.

(3) For any p ∈ N, β < α, frac(pθβ + θα) ∈ D.

(4) For any m ≥ n and sequence
{xi ∈ spanQ({θα : α < ω1}} : i < m} of elements with
increasing heights, (x0, x1, · · · , xm−1) ∈ Xm.

Theorem (Peng-Wu)

If {θα : α < ω1} reads (h, ~X). Then Gn is Lindelöf but Gn+1 is
not Lindelöf.
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In fact, h is continuous on a comeager set D.

Definition

Let Y = {θα : α < ω1} ⊆ R. We call Y reads (h, ~X) if

(1) Y is a set of irrational real numbers.

(2) Y ∪ {1} is rationally independent.

(3) For any p ∈ N, β < α, frac(pθβ + θα) ∈ D.

(4) For any m ≥ n and sequence
{xi ∈ spanQ({θα : α < ω1}} : i < m} of elements with
increasing heights, (x0, x1, · · · , xm−1) ∈ Xm.

Theorem (Peng-Wu)

If {θα : α < ω1} reads (h, ~X). Then Gn is Lindelöf but Gn+1 is
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When the group is Menger ?

Definition

Let T = {oscγ |β : β < γ < ω1}. For each β < ω1, define the
partition Pβ of [β, ω1) by {{γ ≥ β : oscγ |β = t} : t ∈ levelT (β)}.
We call Y = {θα : α < ω1} is solid Menger if for any β < ω1, the
product of any finite many spaces from
Pβ(Y ) = {{θγ : γ ∈ P} : P ∈ Pβ} is Menger.

Theorem

Assume Y reads (h, ~X). If Y is solid Menger, then Gn is Menger
but Gn+1 is not Menger.

Theorem

There exists a solid Menger space Y which reads (h, ~X) in ZFC.
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Tools for constructing Menger space

Definition

Let 1 ≤ n ∈ N and {Xi ∈ [N↑N]d : i < n}. We call
∏
i<n

Xi is

n-d-unbounded if for each g ∈ NN, there are Ai ∈ [Xi]
<d such that

for any ~x ∈
∏
i<n

(Xi \Ai), min(~x) 6≤∗ g.

Lemma (cf(d) = d)

Let 1 ≤ n ∈ N, and {Xi : i < n} be a sequence of subsets of N↑N

with size d and containing Q∞. If
∏
i<n

Xi is n-d-unbounded, then∏
i<n

Xi is Menger.
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Construction of subgroup of R
n = 2, subgroup of Rω:

Theorem (cov(M) = d)

There exists a Menger subgroup G of Rω such that G2 is not
Menger.

Sketch of proof.

P = {p ∈ Rω : ∀k < ω(p(k) ∈ Q) & ∃l < ω∀k ≥ l(p(k) = 0)}
= {pk : k < ω}.

P0 : a maximal linear independent subset of P .
D = {fα : α < d}: a dominating family and also closed under
finite modification.
For each α < d, define

Wfα =
⋂

g=∗fα

⋃
k<ω

Bρ(pk,
1

g(k) + 1
).
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Sketch of proof (continue)

Proof.

Construct { xα, yα ∈ Rω : α < d} by transfinite recursion.
Hα: the group generated by {xβ, yβ : β < α}
Gα: the group generated by {xβ, yβ : β ≤ α}.
G =

⋃
α<dGα.

By induction, we will make sure that the following requirements
are satisfied.

(1) For any α < d, P0 ∪ {xβ, yβ : β ≤ α} is linear independent.

(2) For any α < d, k < ω, |xα(k)|+ |yα(k)| > fα(k).

(3) For any γ ≤ α < d. If x ∈ Gα \Hγ , then x ∈Wfγ .
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Construction of subgroup of R

n ≥ 3, subgroup of R:

Lemma

Let C ∈ Zm×(n+1) with rank(C) = m ≤ n, ~q ∈ Rm and f ∈ NN.
Then there exists ~y ∈ (R/Q)n+1 such that ~y · CT = ~q and∑
j≤n
|h(yj)(k)| > f(k) for all k ∈ N.

Lemma

Let f ∈ NN,
Y = {~y ∈ (R/Q)n+1 : ∀k ∈ N (

∑
j≤n
|h(yj)(k)| > f(k))},

C ∈ Zm×(n+1) with rank(C) = m ≤ n and W be comeager
subset of Rm. Then {~y ∈ Y : ~y · CT ∈W} is comeager set in Y .
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A new conception: W-rich

Definition

Let W ⊆ Rn be comeager set, A ∈ Qn2
be invertible matrix,

~x ∈ Rm and 1 ≤ m ≤ n− 1.

1 WA = {~x ·A : ~x ∈W}.
2 (WA)~x = {~z ∈ Rn−m : ~z ⊕ ~x ∈WA}.

Definition

W ⊆ Rn: comeager set, ~r : r0 = 0 < r1 < r2 < · · · < rk < n− 1,
~A = {Aj ∈ Q(n−rj)2 : j < k}: invertible matrixes and ~x ∈ Rn.

W0 = W and ~x0 = ~x.

For any j < k,
Wj+1 = {~y ∈ Rn−rj+1 : (WjAj)~y is comeager in Rrj+1−rj}
and ~xj+1 = ~xjAj |(n− rj) \ (rj+1 − rj).

We call ~x is W -rich if ~xk ∈Wk for any ~r and ~A.
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Properties of W-rich

Lemma

Let f ∈ NN,
Y = {~y ∈ (R/Q)n+1 : ∀k ∈ N (

∑
j≤n
|h(yj)(k)| > f(k))},

C ∈ Zn×(n+1), ~z ∈ Rn, and W be comeager in Rn. If ~z is W -rich,
then {~y ∈ Y : ~z + ~y · CT is W -rich} is comeager in Y .

Lemma

Let W ⊆ Rn be comeager. If ~0 ∈W and W~0|n\r is comeager in Rr

for any 1 ≤ r < n. Then ~0 is W -rich.
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Construction of subgroup of R

Theorem (cov(M) = d = cf(d))

For any n ≥ 1, There is a subgroup G of R such that Gn is
Menger but Gn+1 is not Menger.

Sketch of proof.

R/Q: { 0 } ∪ (R \Q)

h : R/Q→ N↑N : a fixed homeomorphism embedding with
h(Q[

√
2]/Q) = Q∞.

P0 : a maximal linear independent subset of Q[
√

2]/Q.
D = {fα : α < d}: a dominating family and also closed under
finite modification.
For each α < d, define

Wfα = {~x ∈ (R/Q)n : ∃∞p ∈ N (fα(p) < min{h(xi)(p) : i < n})}.
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Sketch of proof (continue)

Proof.

Construct {~xα ∈ Rn+1 : α < d} by transfinite recursion.
Hα: the group generated by {xβ,j : β < α, j ≤ n}.
Gα: the group generated by {xβ,j : β ≤ α, j ≤ n}.
G =

⋃
α<dGα.

By induction, we will make sure that the following requirements
are satisfied.

Gα ⊆ R/Q.

For any α < d, P0 ∪ {xβ,j : β ≤ α, j ≤ n} is linearly
independent.

For any α < d, k ∈ N,
∑
j≤n
|h(xα,j)(k)| > fα(k).

For any γ ≤ α < d and ~x ∈ ({ 0 } ∪ (Gα \Hγ))n, ~x is
Wfγ -rich.
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Thanks for your attention!
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