Square of Menger groups

Jialiang He This work is cooperated with Yinhe Peng and Liuzhen Wu

Department of Mathematics, Sichuan University, China

CACML 2020, Tianjin 15 Nov, 2020

2 Selection principle in groups

Set-theoretic topology:

set theory—general topology—independent (ZFC) results. Selection principle:

- (1) selecting
- (2) describe covering properties
- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Set-theoretic topology:

set theory—general topology—independent (ZFC) results. Selection principle:

(1) selecting

(2) describe covering properties

- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

Set-theoretic topology:

- (1) selecting
- (2) describe covering properties
- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

Set-theoretic topology:

- (1) selecting
- (2) describe covering properties
- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

Set-theoretic topology:

- (1) selecting
- (2) describe covering properties
- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

Set-theoretic topology:

- (1) selecting
- (2) describe covering properties
- (3) measure- and category-theoretic properties
- (4) local properties in topological spaces
- (5) function spaces

Definition (Borel 1919)

 $X \subseteq \mathbb{R}$, strong measure zero : $\forall (\varepsilon_n > 0) \exists \text{ interval } |I_n| < \varepsilon_n, X \subseteq \bigcup I_n.$

Conjecture (Borel conjecture)

Every strong measure zero set is countable.

Definition (Borel 1919)

 $X \subseteq \mathbb{R}$, strong measure zero :

 $\forall (\varepsilon_n > 0) \exists \text{ interval } |I_n| < \varepsilon_n, X \subseteq \bigcup I_n.$

Conjecture (Borel conjecture)

Every strong measure zero set is countable.

Definition (Borel 1919)

 $X \subseteq \mathbb{R}$, strong measure zero :

 $\forall (\varepsilon_n > 0) \exists \text{ interval } |I_n| < \varepsilon_n, X \subseteq \bigcup I_n.$

Conjecture (Borel conjecture)

Every strong measure zero set is countable.

Definition (Borel 1919)

 $X \subseteq \mathbb{R}$, strong measure zero :

 $\forall (\varepsilon_n > 0) \exists \text{ interval } |I_n| < \varepsilon_n, X \subseteq \bigcup I_n.$

Conjecture (Borel conjecture)

Every strong measure zero set is countable.

Definition (Rothberger 1938)

Topology space, Rothberger space: $\forall \text{open cover } \mathcal{U}_n, \exists U_n \in \mathcal{U}_n, \{U_n\} \text{ is open cover.}$

Theorem (Fremlin-Miller 1988)

 $X \subseteq \mathbb{R}$, strong measure zero \iff \forall compatible topology τ , (X, τ) is Rothberger.

A∎ ▶ ♦ ■ ▶

Definition (Rothberger 1938)

Topology space, Rothberger space: $\forall \text{open cover } \mathcal{U}_n, \exists U_n \in \mathcal{U}_n, \{U_n\} \text{ is open cover.}$

Theorem (Fremlin-Miller 1988)

 $X \subseteq \mathbb{R}$, strong measure zero \iff \forall compatible topology τ , (X, τ) is Rothberger.

Definition (Menger 1924)

Metric space, Menger basis property: \forall basis \mathcal{B} , \exists subcover $\{U_n\}$, $d(U_n) \rightarrow 0$.

Theorem (Hurewicz 1926)

Menger basis property \iff $\forall open cover U_n, \exists finite U_n \subseteq U_n, \{\bigcup U_n\} open cover.$

A⊒ ▶ ∢ ∃ ▶

Definition (Menger 1924)

Metric space, Menger basis property: \forall basis \mathcal{B} , \exists subcover $\{U_n\}$, $d(U_n) \rightarrow 0$.

Theorem (Hurewicz 1926)

Menger basis property \iff $\forall \text{open cover } \mathcal{U}_n, \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \{\bigcup U_n\} \text{ open cover.}$

Definition (Franklin 1965)

Topology space X, Fréchet-Urysohn space : $\forall A \subseteq X, \ \overline{A} = [A]_{seq} = \{x \in X : \exists \{a_n\} \to x, a_n \in A\}.$

Tychonoff space X, C(X): continuous functions $f: X \to \mathbb{R}$, pointwise convergence topology.

Question (Gerlits-Nagy 1982)

When C(X) is Fréchet-Urysohn space?

- **→** → **→**

Definition (Franklin 1965)

Topology space X, Fréchet-Urysohn space : $\forall A \subseteq X, \ \overline{A} = [A]_{seq} = \{x \in X : \exists \{a_n\} \to x, a_n \in A\}.$

Tychonoff space X, C(X): continuous functions $f: X \to \mathbb{R}$, pointwise convergence topology.

Question (Gerlits-Nagy 1982)

When C(X) is Fréchet-Urysohn space?

Definition (Gerlits-Nagy, 1982)

(1) Open cover \mathcal{U} , Ω -cover: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}$, $F \subseteq U$.

(2) Open cover \mathcal{U} , Γ -cover: $\forall x \in X$, $\{U \in \mathcal{U} : x \notin U\}$ finite.

(3) Topology space X, γ -space: $\forall \Omega$ -cover $\mathcal{U} \exists \Gamma$ -cover $\mathcal{V} \subseteq U$.

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn $\iff X$ is γ -space.

∰ ▶ ∢ ≣ ▶

Definition (Gerlits-Nagy, 1982)

(1) Open cover \mathcal{U} , Ω -cover: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}$, $F \subseteq U$.

(2) Open cover \mathcal{U} , Γ -cover: $\forall x \in X$, $\{U \in \mathcal{U} : x \notin U\}$ finite.

(3) Topology space X, γ -space: $\forall \Omega$ -cover $\mathcal{U} \exists \Gamma$ -cover $\mathcal{V} \subseteq U$.

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn $\iff X$ is γ -space.

Definition (Gerlits-Nagy, 1982)

(1) Open cover \mathcal{U} , Ω -cover: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}$, $F \subseteq U$.

(2) Open cover \mathcal{U} , Γ -cover: $\forall x \in X$, $\{U \in \mathcal{U} : x \notin U\}$ finite.

(3) Topology space X, γ -space: $\forall \Omega$ -cover $\mathcal{U} \exists \Gamma$ -cover $\mathcal{V} \subseteq U$.

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn $\iff X$ is γ -space.

- **→** → **→**

Definition (Gerlits-Nagy, 1982)

- (1) Open cover \mathcal{U} , Ω -cover: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}$, $F \subseteq U$.
- (2) Open cover \mathcal{U} , Γ -cover: $\forall x \in X$, $\{U \in \mathcal{U} : x \notin U\}$ finite.
- (3) Topology space X, γ -space: $\forall \Omega$ -cover $\mathcal{U} \exists \Gamma$ -cover $\mathcal{V} \subseteq U$.

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn $\iff X$ is γ -space.

- **→** → **→**

Definition (Gerlits-Nagy, 1982)

- (1) Open cover \mathcal{U} , Ω -cover: \forall finite $F \subseteq X$, $\exists U \in \mathcal{U}$, $F \subseteq U$.
- (2) Open cover \mathcal{U} , Γ -cover: $\forall x \in X$, $\{U \in \mathcal{U} : x \notin U\}$ finite.
- (3) Topology space X, γ -space: $\forall \Omega$ -cover $\mathcal{U} \exists \Gamma$ -cover $\mathcal{V} \subseteq U$.

Theorem (Gerlits-Nagy 1982)

C(X) is Fréchet-Urysohn $\iff X$ is γ -space.

Definition (Scheepers 1996)

Let \mathcal{A} and \mathcal{B} .

(1) $\mathsf{S}_1(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists U_n \in \mathcal{U}_n, \{U_n\} \in \mathcal{B}.$

(2) $\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \bigcup U_n \in \mathcal{B}.$

(3)
$$\mathsf{U}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}}$, $\exists \text{ finite } U_n \subseteq \mathcal{U}_n, \{\bigcup U_n\} \in \mathcal{B}.$

 $) \ \begin{pmatrix} \mathcal{A} \\ \mathcal{B} \end{pmatrix} : \ \forall \mathcal{U} \in \mathcal{A} \ \exists \mathcal{V} \subseteq \mathcal{U}, \mathcal{V} \in \mathcal{B}.$

♬▶ ◀ ☱ ▶ ◀

Definition (Scheepers 1996)

Let \mathcal{A} and \mathcal{B} .

(1) $\mathsf{S}_1(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists U_n \in \mathcal{U}_n, \{U_n\} \in \mathcal{B}.$

(2) $\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \bigcup U_n \in \mathcal{B}.$

(3) $U_{\text{fin}}(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}}$, $\exists \text{ finite } U_n \subseteq \mathcal{U}_n, \{\bigcup U_n\} \in \mathcal{B}.$

 $\left(egin{array}{c} \mathcal{A} \\ \mathcal{B} \end{array}
ight) : \ orall \mathcal{U} \in \mathcal{A} \ \exists \mathcal{V} \subseteq \mathcal{U}, \mathcal{V} \in \mathcal{B}.$

Definition (Scheepers 1996)

Let \mathcal{A} and \mathcal{B} .

(1)
$$\mathsf{S}_1(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists U_n \in \mathcal{U}_n, \{U_n\} \in \mathcal{B}.$

(2) $\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \bigcup U_n \in \mathcal{B}.$

(3)
$$U_{\text{fin}}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}}$, $\exists \text{ finite } U_n \subseteq \mathcal{U}_n, \{\bigcup U_n\} \in \mathcal{B}.$

 $) \quad \begin{pmatrix} \mathcal{A} \\ \mathcal{B} \end{pmatrix} : \ \forall \mathcal{U} \in \mathcal{A} \ \exists \mathcal{V} \subseteq \mathcal{U}, \mathcal{V} \in \mathcal{B}.$

白 ト ・ ヨ ト ・

Definition (Scheepers 1996)

Let \mathcal{A} and \mathcal{B} .

(1)
$$\mathsf{S}_1(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists U_n \in \mathcal{U}_n, \{U_n\} \in \mathcal{B}.$

(2)
$$\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \bigcup U_n \in \mathcal{B}.$

(3)
$$\mathsf{U}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}}$, $\exists \text{ finite } U_n \subseteq \mathcal{U}_n, \{\bigcup U_n\} \in \mathcal{B}.$

$$\begin{pmatrix} \mathcal{A} \\ \mathcal{B} \end{pmatrix}$$
: $\forall \mathcal{U} \in \mathcal{A} \exists \mathcal{V} \subseteq \mathcal{U}, \mathcal{V} \in \mathcal{B}$

- **→** → **→**

3

Definition (Scheepers 1996)

Let \mathcal{A} and \mathcal{B} .

(1)

(1)
$$\mathsf{S}_1(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists U_n \in \mathcal{U}_n, \{U_n\} \in \mathcal{B}.$

(2)
$$\mathsf{S}_{\mathsf{fin}}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}} \exists \text{ finite } U_n \subseteq \mathcal{U}_n, \bigcup U_n \in \mathcal{B}.$

(3)
$$U_{fin}(\mathcal{A},\mathcal{B})$$
: $\forall \langle \mathcal{U}_n \rangle \in \mathcal{A}^{\mathbb{N}}$, \exists finite $U_n \subseteq \mathcal{U}_n$, $\{\bigcup U_n\} \in \mathcal{B}$.

(4)
$$\begin{pmatrix} \mathcal{A} \\ \mathcal{B} \end{pmatrix}$$
: $\forall \mathcal{U} \in \mathcal{A} \exists \mathcal{V} \subseteq \mathcal{U}, \mathcal{V} \in \mathcal{B}.$

- **→** → **→**

э

Explained by picture

Figure: $S_1(\mathcal{A}, \mathcal{B})$

э

@▶ ∢ ≣▶

Scheepers Diagram

 $\Pi(\mathcal{A},\mathcal{B}) \text{ , } \Pi \in \{\mathsf{S}_1,\mathsf{S}_{\mathsf{fin}},\mathsf{U}_{\mathsf{fin}},\big(\ \big)\}\text{, } \mathcal{A},\mathcal{B} \in \{O,\Gamma,\Omega\}.$

Figure: Scheepers Diagram

Theorem (Todorćević 1995)

$\exists X, Y \in S_1(\Omega, \Gamma)$, $X \times Y$ is not Lindelöf.

Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, $\exists X, Y \subseteq \mathbb{R}, S_1(\Omega, \Gamma), X \times Y \notin S_{fin}(O, O).$

Theorem (Zdomskyy 2018)

In Miller model: $\forall X, Y \subseteq \mathbb{R}, S_{fin}(O, O) \Longrightarrow X \times Y \in S_{fin}(O, O).$

Theorem (Zdomskyy 2019)

In Laver model: $\forall X, Y \subseteq \mathbb{R}, U_{fin}(O, \Gamma) \Longrightarrow X \times Y \in U_{fin}(O, \Gamma).$

/₽ ► < ∃ ►

Theorem (Todorćević 1995)

 $\exists X, Y \in S_1(\Omega, \Gamma)$, $X \times Y$ is not Lindelöf.

Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, $\exists X, Y \subseteq \mathbb{R}, S_1(\Omega, \Gamma), X \times Y \notin S_{fin}(O, O).$

Theorem (Zdomskyy 2018)

In Miller model: $\forall X, Y \subseteq \mathbb{R}, S_{fin}(0, 0) \Longrightarrow X \times Y \in S_{fin}(0, 0).$

Theorem (Zdomskyy 2019)

In Laver model: $\forall X, Y \subseteq \mathbb{R}, U_{fin}(O, \Gamma) \Longrightarrow X \times Y \in U_{fin}(O, \Gamma).$

- **→** → **→**

Theorem (Todorćević 1995)

 $\exists X, Y \in S_1(\Omega, \Gamma)$, $X \times Y$ is not Lindelöf.

Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, $\exists X, Y \subseteq \mathbb{R}, S_1(\Omega, \Gamma), X \times Y \notin S_{fin}(O, O).$

Theorem (Zdomskyy 2018)

In Miller model: $\forall X, Y \subseteq \mathbb{R}, S_{fin}(O, O) \Longrightarrow X \times Y \in S_{fin}(O, O).$

Theorem (Zdomskyy 2019)

In Laver model: $\forall X, Y \subseteq \mathbb{R}, U_{fin}(O, \Gamma) \Longrightarrow X \times Y \in U_{fin}(O, \Gamma).$

Theorem (Todorćević 1995)

 $\exists X, Y \in S_1(\Omega, \Gamma)$, $X \times Y$ is not Lindelöf.

Theorem (Miller-Tsaban-Zdomskyy 2013)

CH, $\exists X, Y \subseteq \mathbb{R}, S_1(\Omega, \Gamma), X \times Y \notin S_{fin}(O, O).$

Theorem (Zdomskyy 2018)

In Miller model: $\forall X, Y \subseteq \mathbb{R}, S_{fin}(O, O) \Longrightarrow X \times Y \in S_{fin}(O, O).$

Theorem (Zdomskyy 2019)

In Laver model: $\forall X, Y \subseteq \mathbb{R}, U_{fin}(O, \Gamma) \Longrightarrow X \times Y \in U_{fin}(O, \Gamma).$

Groups

Definition (M. Tkačenko 1998)

Topological group G, *o*-bounded: $\forall U_n \ni e, \exists \text{ finite } F_n, G = \bigcup_{n \in \omega} F_n * U_n.$

Problem (M. Tkačenko 1998)

Let G, H be o-bounded groups. Is the product $G \times H$ o-bounded?

→ < ∃→

Groups

Definition (M. Tkačenko 1998)

Topological group G, *o*-bounded: $\forall U_n \ni e, \exists \text{ finite } F_n, G = \bigcup_{n \in \omega} F_n * U_n.$

Problem (M. Tkačenko 1998)

Let G, H be o-bounded groups. Is the product $G \times H$ o-bounded?
Modern definition

$$(G, *, e, \tau)$$
. \mathcal{N}_e : all open neighborhoods of e .
 $U \in \mathcal{N}_e$, $g \in G$, let $g * U := \{g * u : u \in U\}$.
Onbd: covers of the form $\{g * U : g \in G\}$, for $U \in \mathcal{N}_e$.

Definition

Assume that $(G, *, e, \tau)$ is a topological group. G is Menger-bounded: $S_{fin}(O_{nbd}, O)$.

 $\mathsf{Fact:} \ \mathbf{S}_{\mathrm{fin}}(\mathrm{O},\mathrm{O}) \Longrightarrow \mathrm{S}_{\mathrm{fin}}(\mathrm{O}_{\mathrm{nbd}},\mathrm{O}).$

$\frac{1}{2}$ -answer

Theorem (Krawczyk-Michalewski 2003)

CH. \exists Menger-bounded group $G, H \leq \mathbb{R}^{\omega}$, $G \times H$ is not Menger-bounded.

Theorem (Machura-Shelah-Tsaban 2007)

CH. \exists Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is not Menger-bounded.

Theorem (Mildenberger 2008)

 $\mathfrak{r} \geq \mathfrak{d}$. $\forall k, \exists G \leq \mathbb{Z}^{\omega}, G^k$ is Menger-bounded, G^{k+1} is not Menger-bounded.

$\frac{1}{2}$ -answer

Theorem (Krawczyk-Michalewski 2003)

CH. \exists Menger-bounded group $G, H \leq \mathbb{R}^{\omega}$, $G \times H$ is not Menger-bounded.

Theorem (Machura-Shelah-Tsaban 2007)

CH. \exists Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is not Menger-bounded.

Theorem (Mildenberger 2008)

 $\mathfrak{r} \geq \mathfrak{d}$. $\forall k, \exists G \leq \mathbb{Z}^{\omega}, G^k$ is Menger-bounded, G^{k+1} is not Menger-bounded.

$\frac{1}{2}$ -answer

Theorem (Krawczyk-Michalewski 2003)

CH. \exists Menger-bounded group $G, H \leq \mathbb{R}^{\omega}$, $G \times H$ is not Menger-bounded.

Theorem (Machura-Shelah-Tsaban 2007)

CH. \exists Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is not Menger-bounded.

Theorem (Mildenberger 2008)

 $\mathfrak{r} \geq \mathfrak{d}$. $\forall k$, $\exists \ G \leq \mathbb{Z}^{\omega}$, G^k is Menger-bounded, G^{k+1} is not Menger-bounded.

Remain open

Problem (M. Tkačenko)

Is it consistent that for each Menger-bounded G, H, $G \times H$ Menger-bounded?

Problem (Machura-Shelah-Tsaban

Is it consistent that for each Menger-bounded group G, G^2 is Menger-bounded?

Problem (Mildenberger)

Does u < g imply that for each Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is Menger-bounded?

Remain open

Problem (M. Tkačenko)

Is it consistent that for each Menger-bounded G, H, $G \times H$ Menger-bounded?

Problem (Machura-Shelah-Tsaban)

Is it consistent that for each Menger-bounded group G, G^2 is Menger-bounded?

Problem (Mildenberger)

Does u < g imply that for each Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is Menger-bounded?

Remain open

Problem (M. Tkačenko)

Is it consistent that for each Menger-bounded G, H, $G \times H$ Menger-bounded?

Problem (Machura-Shelah-Tsaban)

Is it consistent that for each Menger-bounded group G, G^2 is Menger-bounded?

Problem (Mildenberger)

Does u < g imply that for each Menger-bounded group $G \leq \mathbb{Z}^{\omega}$, G^2 is Menger-bounded?

Our motivation

Question (P. Szewczak, B. Tsaban and L. Zdomskky 2018)

Is there, consistently, a Menger topological group whose square is not Menger?

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

< ロ > < 同 > < 三 > <

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each n ≥ 1, there is a subgroup of ℝ^{ω1} such that Gⁿ is Menger but Gⁿ⁺¹ is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

(日)

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

(日)

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

 Menger group square problem is independent with ZFC in the metrizable sense.

Menger group square problem is negative in nonmetrizable sense.

(日)

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

▲□ ► ▲ □ ► ▲

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

Image: A image: A

Theorem (He, Peng and Wu 2020)

- (1) $cov(\mathcal{M}) = \mathfrak{c}$. For each $n \ge 1$, there is a subgroup of $\mathbb{Z}^{\mathbb{N}}$ such that G^n is Menger but G^{n+1} is not Menger-bounded.
- (2) For each $n \ge 1$, there is a subgroup of \mathbb{R}^{ω_1} such that G^n is Menger but G^{n+1} is not Lindelöf.
- (3) $cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d})$. For each $n \ge 1$, there is a subgroup of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Corollary

- Menger group square problem is independent with ZFC in the metrizable sense.
- Menger group square problem is negative in nonmetrizable sense.

Image: A image: A

- For any $f,g\in\mathbb{N}^{\mathbb{N}}$, $f\leq^{*}g$ if $f(n)\leq g(n)$ for all but finitely many n.
- D ⊆ N^N is a dominating family if for each f ∈ N^N there exists g ∈ D such that f ≤* g. ∂ is the least cardinality among all dominating families.
- cov(M) is the least cardinality among all families of comeager subsets of N^N which has empty intersection.

Theorem (Hurewicz]

A set of reals X has Menger's property if, and only if, no continuous image of X in $\mathbb{N}^{\mathbb{N}}$ is dominating.

∄▶ ∢ ≣▶

- For any $f,g\in\mathbb{N}^{\mathbb{N}}$, $f\leq^{*}g$ if $f(n)\leq g(n)$ for all but finitely many n.
- D ⊆ N^N is a dominating family if for each f ∈ N^N there exists g ∈ D such that f ≤* g. ∂ is the least cardinality among all dominating families.
- cov(M) is the least cardinality among all families of comeager subsets of N^N which has empty intersection.

Theorem (Hurewicz]

A set of reals X has Menger's property if, and only if, no continuous image of X in $\mathbb{N}^{\mathbb{N}}$ is dominating.

- For any $f,g\in\mathbb{N}^{\mathbb{N}}$, $f\leq^{*}g$ if $f(n)\leq g(n)$ for all but finitely many n.
- D ⊆ N^N is a dominating family if for each f ∈ N^N there exists g ∈ D such that f ≤* g. ∂ is the least cardinality among all dominating families.
- cov(M) is the least cardinality among all families of comeager subsets of N^N which has empty intersection.

Theorem (Hurewicz

A set of reals X has Menger's property if, and only if, no continuous image of X in $\mathbb{N}^{\mathbb{N}}$ is dominating.

コン・ハリン・

- For any $f,g \in \mathbb{N}^{\mathbb{N}}$, $f \leq^{*} g$ if $f(n) \leq g(n)$ for all but finitely many n.
- D ⊆ N^N is a dominating family if for each f ∈ N^N there exists g ∈ D such that f ≤* g. ∂ is the least cardinality among all dominating families.
- cov(M) is the least cardinality among all families of comeager subsets of N^N which has empty intersection.

Theorem (Hurewicz)

A set of reals X has Menger's property if, and only if, no continuous image of X in $\mathbb{N}^{\mathbb{N}}$ is dominating.

Definition

- $[\omega_1]^2$ is the set of all subset of ω_1 of size 2.
- $osc: [\omega_1]^2 \to \mathbb{N}$ is a function. Denote $osc_\alpha : \alpha \to \mathbb{N}$ by $osc_\alpha(\xi) = osc(\{\alpha, \xi\})$ for $\xi < \alpha < \omega_1$.
- $T = \{osc_{\alpha}|\beta : \beta \leq \alpha\}$ and $level_T(\beta) = \{ocs_{\alpha}|\beta : \beta \leq \alpha < \omega_1\}$ for any $\beta < \omega_1$.

Fact: For any $\beta < \omega_1$, $level_T(\beta)$ is countable.

Definition

- $[\omega_1]^2$ is the set of all subset of ω_1 of size 2.
- $osc: [\omega_1]^2 \to \mathbb{N}$ is a function. Denote $osc_\alpha : \alpha \to \mathbb{N}$ by $osc_\alpha(\xi) = osc(\{\alpha, \xi\})$ for $\xi < \alpha < \omega_1$.
- $T = \{osc_{\alpha}|\beta : \beta \leq \alpha\}$ and $level_T(\beta) = \{ocs_{\alpha}|\beta : \beta \leq \alpha < \omega_1\}$ for any $\beta < \omega_1$.

Fact: For any $\beta < \omega_1$, $level_T(\beta)$ is countable.

∰ ▶ ∢ ≣ ▶

Definition

- $[\omega_1]^2$ is the set of all subset of ω_1 of size 2.
- $osc: [\omega_1]^2 \to \mathbb{N}$ is a function. Denote $osc_\alpha : \alpha \to \mathbb{N}$ by $osc_\alpha(\xi) = osc(\{\alpha, \xi\})$ for $\xi < \alpha < \omega_1$.
- $T = \{osc_{\alpha} | \beta : \beta \leq \alpha\}$ and $level_T(\beta) = \{ocs_{\alpha} | \beta : \beta \leq \alpha < \omega_1\}$ for any $\beta < \omega_1$.

Fact: For any $\beta < \omega_1$, $level_T(\beta)$ is countable.

∰ ▶ ∢ ≣ ▶

Definition

- $[\omega_1]^2$ is the set of all subset of ω_1 of size 2.
- $osc: [\omega_1]^2 \to \mathbb{N}$ is a function. Denote $osc_\alpha : \alpha \to \mathbb{N}$ by $osc_\alpha(\xi) = osc(\{\alpha, \xi\})$ for $\xi < \alpha < \omega_1$.
- $T = \{osc_{\alpha}|\beta : \beta \leq \alpha\}$ and $level_T(\beta) = \{ocs_{\alpha}|\beta : \beta \leq \alpha < \omega_1\}$ for any $\beta < \omega_1$.

Fact: For any $\beta < \omega_1$, $level_T(\beta)$ is countable.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.
- $\mathbb{N}^{\uparrow \mathbb{N}} = \overline{\mathbb{N}}^{\uparrow \mathbb{N}} \setminus \mathbb{Q}_{\infty}.$

- ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
- ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{\mathbb{P}}$
- For any countable dense subset Q ⊆ N[™], there is a homeomorphism h: N[™] → N[™] such that h(Q) = Q.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow\mathbb{N}}$ is the set of all increasing functions $f:\mathbb{N}\to\overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.
- $\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}.$

- ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
- ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{ ext{T}}$
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\mathbb{N}}$, there is a homeomorphism $h \colon \overline{\mathbb{N}}^{\mathbb{N}} \to \overline{\mathbb{N}}^{\mathbb{N}}$ such that $h(Q) = \mathbb{Q}$.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.
- $\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}.$

- ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
- ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{ ext{T}}$
- For any countable dense subset Q ⊆ N[™], there is a homeomorphism h: N[™] → N[™] such that h(Q) = Q.

• $\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{O}_{\infty}.$

Preliminary: General topology

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.
- Fact:
 - ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
 - ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{\mathbb{P}}$
 - For any countable dense subset Q ⊆ N[™], there is a homeomorphism h: N[™] → N[™] such that h(Q) = Q.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.

•
$$\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}$$

- ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
- ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{ op}$
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\mathbb{N}}$, there is a homeomorphism $h \colon \overline{\mathbb{N}}^{\mathbb{N}} \to \overline{\mathbb{N}}^{\mathbb{N}}$ such that $h(Q) = \mathbb{Q}$.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.

•
$$\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}$$

- ℝ \ Q is homeomorphic to N^{↑N}, with the topology inherited from the product topology of N^{↑N}.
- ullet \mathbb{Q}_∞ is a countable dense subset of $\overline{\mathbb{N}}^{ op}$
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\mathbb{N}}$, there is a homeomorphism $h \colon \overline{\mathbb{N}}^{\mathbb{N}} \to \overline{\mathbb{N}}^{\mathbb{N}}$ such that $h(Q) = \mathbb{Q}$.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.

•
$$\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}$$

- $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to $\mathbb{N}^{\uparrow \mathbb{N}}$, with the topology inherited from the product topology of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.
- \mathbb{Q}_{∞} is a countable dense subset of $\overline{\mathbb{N}}^{\uparrow\mathbb{N}}$.
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$, there is a homeomorphism $h : \overline{\mathbb{N}}^{\uparrow \mathbb{N}} \to \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ such that h(Q) = Q.

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.

•
$$\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}$$

- $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to $\mathbb{N}^{\uparrow \mathbb{N}}$, with the topology inherited from the product topology of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.
- \mathbb{Q}_{∞} is a countable dense subset of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$, there is a homeomorphism $h \colon \overline{\mathbb{N}}^{\uparrow \mathbb{N}} \to \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ such that $h(Q) = \mathbb{Q}$

Definition

- $\overline{\mathbb{N}}$ is the one-point compactification $\mathbb{N}\cup\{\,\infty\,\}$ of \mathbb{N} with discrete topology.
- $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$.
- \mathbb{Q}_{∞} is the set of all all increasing functions $f : \mathbb{N} \to \overline{\mathbb{N}}$ with $\{\infty\} \in rang(f)$.

•
$$\mathbb{N}^{\uparrow\mathbb{N}} = \overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus \mathbb{Q}_{\infty}$$

- $\mathbb{R} \setminus \mathbb{Q}$ is homeomorphic to $\mathbb{N}^{\uparrow \mathbb{N}}$, with the topology inherited from the product topology of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.
- \mathbb{Q}_{∞} is a countable dense subset of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.
- For any countable dense subset $Q \subseteq \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$, there is a homeomorphism $h \colon \overline{\mathbb{N}}^{\uparrow \mathbb{N}} \to \overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ such that $h(Q) = \mathbb{Q}_{\infty}$.

- View ℝ as a vector space over ℚ. span_ℚ(X) is the vector subspace generated by X for any X ⊆ ℝ.
- For any $\{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$ and $x \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\})$, the height of x in $\{\theta_{\alpha} : \alpha < \omega_1\}$ is the least α such that $x \in span_{\mathbb{Q}}(\{\theta_{\xi} : \xi \leq \alpha\})$.
- A collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients.
- A subset S of an abelian group is linearly independent (over \mathbb{Z}) if the only linear combination of these elements that is equal to zero is trivial.

- View ℝ as a vector space over ℚ. span_ℚ(X) is the vector subspace generated by X for any X ⊆ ℝ.
- For any $\{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$ and $x \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\})$, the height of x in $\{\theta_{\alpha} : \alpha < \omega_1\}$ is the least α such that $x \in span_{\mathbb{Q}}(\{\theta_{\xi} : \xi \leq \alpha\})$.
- A collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients.
- A subset S of an abelian group is linearly independent (over \mathbb{Z}) if the only linear combination of these elements that is equal to zero is trivial.

- View ℝ as a vector space over ℚ. span_ℚ(X) is the vector subspace generated by X for any X ⊆ ℝ.
- For any $\{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$ and $x \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\})$, the height of x in $\{\theta_{\alpha} : \alpha < \omega_1\}$ is the least α such that $x \in span_{\mathbb{Q}}(\{\theta_{\xi} : \xi \leq \alpha\})$.
- A collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients.
- A subset S of an abelian group is linearly independent (over \mathbb{Z}) if the only linear combination of these elements that is equal to zero is trivial.

- View ℝ as a vector space over ℚ. span_ℚ(X) is the vector subspace generated by X for any X ⊆ ℝ.
- For any $\{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$ and $x \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\})$, the height of x in $\{\theta_{\alpha} : \alpha < \omega_1\}$ is the least α such that $x \in span_{\mathbb{Q}}(\{\theta_{\xi} : \xi \leq \alpha\})$.
- A collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients.
- A subset S of an abelian group is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial.
Preliminary: Linear algebra

Definition

- View ℝ as a vector space over ℚ. span_ℚ(X) is the vector subspace generated by X for any X ⊆ ℝ.
- For any $\{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$ and $x \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\})$, the height of x in $\{\theta_{\alpha} : \alpha < \omega_1\}$ is the least α such that $x \in span_{\mathbb{Q}}(\{\theta_{\xi} : \xi \leq \alpha\})$.
- A collection of real numbers is rationally independent if none of them can be written as a linear combination of the other numbers in the collection with rational coefficients.
- A subset S of an abelian group is linearly independent (over Z) if the only linear combination of these elements that is equal to zero is trivial.

Construction of subgroup of \mathbb{R}^{ω_1}

Recall Peng-Wu's construction of a group G such that G^n is Lindelöf but G^{n+1} is not Lindelöf. Fix n.

- Construct $h: [0,1) \to \mathbb{Q}$ and a sequences of comeager set $\{X_m \subseteq \mathbb{R}^m : n \le m \in \mathbb{N}\}.$
- Choose $\{\theta_{\alpha} : \alpha < \omega_1\}$ such that any $m \ge n$ and sequence $x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}), i < m$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.
- Define $\{w_{\beta} : \beta < \omega_1\} \subseteq \mathbb{R}^{\omega_1}$ as follows:

$$w_{\beta}(\xi) = \begin{cases} h(frac(\theta_{\xi}osc(\xi,\beta) + \theta_{\beta}) & : \xi < \beta \\ 0 & : \xi \ge \beta \end{cases}$$

and G be the subgroup of $(\mathbb{R}^{\omega_1}, +)$ which is generated by $\{w_\beta : \beta < \omega_1\}.$

Construction of subgroup of \mathbb{R}^{ω_1}

Recall Peng-Wu's construction of a group G such that G^n is Lindelöf but G^{n+1} is not Lindelöf. Fix n.

- Construct $h: [0,1) \to \mathbb{Q}$ and a sequences of comeager set $\{X_m \subseteq \mathbb{R}^m : n \le m \in \mathbb{N}\}.$
- Choose $\{\theta_{\alpha} : \alpha < \omega_1\}$ such that any $m \ge n$ and sequence $x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}), i < m$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.
- Define $\{w_{\beta}: \beta < \omega_1\} \subseteq \mathbb{R}^{\omega_1}$ as follows:

$$w_{\beta}(\xi) = \begin{cases} h(frac(\theta_{\xi}osc(\xi,\beta) + \theta_{\beta}) & : \xi < \beta \\ 0 & : \xi \ge \beta \end{cases}$$

and G be the subgroup of $(\mathbb{R}^{\omega_1}, +)$ which is generated by $\{w_\beta : \beta < \omega_1\}.$

Construction of subgroup of \mathbb{R}^{ω_1}

Recall Peng-Wu's construction of a group G such that G^n is Lindelöf but G^{n+1} is not Lindelöf. Fix n.

- Construct $h: [0,1) \to \mathbb{Q}$ and a sequences of comeager set $\{X_m \subseteq \mathbb{R}^m : n \le m \in \mathbb{N}\}.$
- Choose $\{\theta_{\alpha} : \alpha < \omega_1\}$ such that any $m \ge n$ and sequence $x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}), i < m$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.
- Define $\{w_{\beta}: \beta < \omega_1\} \subseteq \mathbb{R}^{\omega_1}$ as follows:

$$w_{\beta}(\xi) = \begin{cases} h(frac(\theta_{\xi}osc(\xi,\beta) + \theta_{\beta}) & : \xi < \beta \\ 0 & : \xi \ge \beta \end{cases}$$

and G be the subgroup of $(\mathbb{R}^{\omega_1},+)$ which is generated by $\{w_\beta:\beta<\omega_1\}.$

In fact, h is continuous on a comeager set D.

Definition

Let $Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$. We call Y reads (h, \vec{X}) if

(1) Y is a set of irrational real numbers.

(2) $Y \cup \{1\}$ is rationally independent.

(3) For any $p \in \mathbb{N}, \beta < \alpha$, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

(4) For any m ≥ n and sequence {x_i ∈ span_Q({θ_α : α < ω₁}} : i < m} of elements with increasing heights, (x₀, x₁, · · · , x_{m-1}) ∈ X_m.

Theorem (Peng-Wu)

In fact, h is continuous on a comeager set D.

Definition

Let $Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$. We call Y reads (h, \vec{X}) if

(1) Y is a set of irrational real numbers.

(2) $Y \cup \{1\}$ is rationally independent.

(3) For any $p \in \mathbb{N}, \beta < \alpha$, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

(4) For any $m \ge n$ and sequence $\{x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}\} : i < m\}$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.

Theorem (Peng-Wu)

In fact, h is continuous on a comeager set D.

Definition

Let $Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$. We call Y reads (h, \vec{X}) if

(1) Y is a set of irrational real numbers.

- (2) $Y \cup \{1\}$ is rationally independent.
- (3) For any $p \in \mathbb{N}, \beta < \alpha$, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

(4) For any $m \ge n$ and sequence $\{x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}\} : i < m\}$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.

Theorem (Peng-Wu)

In fact, h is continuous on a comeager set D.

Definition

Let
$$Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$$
. We call Y reads (h, \vec{X}) if

- (1) Y is a set of irrational real numbers.
- (2) $Y \cup \{1\}$ is rationally independent.
- (3) For any $p \in \mathbb{N}, \beta < \alpha$, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

4) For any $m \ge n$ and sequence $\{x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}\} : i < m\}$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.

Theorem (Peng-Wu)

In fact, h is continuous on a comeager set D.

Definition

Let
$$Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$$
. We call Y reads (h, \vec{X}) if

- (1) Y is a set of irrational real numbers.
- (2) $Y \cup \{1\}$ is rationally independent.

(3) For any
$$p \in \mathbb{N}, \beta < \alpha$$
, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

(4) For any $m \ge n$ and sequence $\{x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}\} : i < m\}$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.

Theorem (Peng-Wu)

In fact, h is continuous on a comeager set D.

Definition

Let
$$Y = \{\theta_{\alpha} : \alpha < \omega_1\} \subseteq \mathbb{R}$$
. We call Y reads (h, \vec{X}) if

- (1) Y is a set of irrational real numbers.
- (2) $Y \cup \{1\}$ is rationally independent.

(3) For any
$$p \in \mathbb{N}, \beta < \alpha$$
, $frac(p\theta_{\beta} + \theta_{\alpha}) \in D$.

(4) For any $m \ge n$ and sequence $\{x_i \in span_{\mathbb{Q}}(\{\theta_{\alpha} : \alpha < \omega_1\}\} : i < m\}$ of elements with increasing heights, $(x_0, x_1, \cdots, x_{m-1}) \in X_m$.

Theorem (Peng-Wu)

Definition

Let $T = \{osc_{\gamma}|\beta : \beta < \gamma < \omega_1\}$. For each $\beta < \omega_1$, define the partition \mathcal{P}_{β} of $[\beta, \omega_1)$ by $\{\{\gamma \geq \beta : osc_{\gamma}|\beta = t\} : t \in level_T(\beta)\}$. We call $Y = \{\theta_{\alpha} : \alpha < \omega_1\}$ is solid Menger if for any $\beta < \omega_1$, the product of any finite many spaces from $\mathcal{P}_{\beta}(Y) = \{\{\theta_{\gamma} : \gamma \in P\} : P \in \mathcal{P}_{\beta}\}$ is Menger.

Theorem

Assume Y reads (h, \vec{X}) . If Y is solid Menger, then G^n is Menger but G^{n+1} is not Menger.

Theorem

There exists a solid Menger space Y which reads $(h, ec{X})$ in ZFC.

- 4 同 6 4 日 6 4 日 6

Definition

Let $T = \{osc_{\gamma}|\beta : \beta < \gamma < \omega_1\}$. For each $\beta < \omega_1$, define the partition \mathcal{P}_{β} of $[\beta, \omega_1)$ by $\{\{\gamma \geq \beta : osc_{\gamma}|\beta = t\} : t \in level_T(\beta)\}$. We call $Y = \{\theta_{\alpha} : \alpha < \omega_1\}$ is solid Menger if for any $\beta < \omega_1$, the product of any finite many spaces from $\mathcal{P}_{\beta}(Y) = \{\{\theta_{\gamma} : \gamma \in P\} : P \in \mathcal{P}_{\beta}\}$ is Menger.

Theorem

Assume Y reads (h, \vec{X}) . If Y is solid Menger, then G^n is Menger but G^{n+1} is not Menger.

Theorem

There exists a solid Menger space Y which reads $(h, ec{X})$ in ZFC.

- 4 同 6 4 日 6 4 日 6

Definition

Let $T = \{osc_{\gamma}|\beta : \beta < \gamma < \omega_1\}$. For each $\beta < \omega_1$, define the partition \mathcal{P}_{β} of $[\beta, \omega_1)$ by $\{\{\gamma \geq \beta : osc_{\gamma}|\beta = t\} : t \in level_T(\beta)\}$. We call $Y = \{\theta_{\alpha} : \alpha < \omega_1\}$ is solid Menger if for any $\beta < \omega_1$, the product of any finite many spaces from $\mathcal{P}_{\beta}(Y) = \{\{\theta_{\gamma} : \gamma \in P\} : P \in \mathcal{P}_{\beta}\}$ is Menger.

Theorem

Assume Y reads (h, \vec{X}) . If Y is solid Menger, then G^n is Menger but G^{n+1} is not Menger.

Theorem

There exists a solid Menger space Y which reads (h, \vec{X}) in ZFC.

Definition

Let $T = \{osc_{\gamma}|\beta : \beta < \gamma < \omega_1\}$. For each $\beta < \omega_1$, define the partition \mathcal{P}_{β} of $[\beta, \omega_1)$ by $\{\{\gamma \geq \beta : osc_{\gamma}|\beta = t\} : t \in level_T(\beta)\}$. We call $Y = \{\theta_{\alpha} : \alpha < \omega_1\}$ is solid Menger if for any $\beta < \omega_1$, the product of any finite many spaces from $\mathcal{P}_{\beta}(Y) = \{\{\theta_{\gamma} : \gamma \in P\} : P \in \mathcal{P}_{\beta}\}$ is Menger.

Theorem

Assume Y reads (h, \vec{X}) . If Y is solid Menger, then G^n is Menger but G^{n+1} is not Menger.

Theorem

There exists a solid Menger space Y which reads (h, \vec{X}) in ZFC.

Tools for constructing Menger space

Definition

Let
$$1 \leq n \in \mathbb{N}$$
 and $\{X_i \in [\overline{\mathbb{N}}^{\uparrow \mathbb{N}}]^{\mathfrak{d}} : i < n\}$. We call $\prod_{i < n} X_i$ is
n- \mathfrak{d} -unbounded if for each $g \in \mathbb{N}^{\mathbb{N}}$, there are $A_i \in [X_i]^{<\mathfrak{d}}$ such that for any $\vec{x} \in \prod_{i < n} (X_i \setminus A_i)$, $\min(\vec{x}) \not\leq^* g$.

$\mathsf{Lemma}\ (cf(\mathfrak{d}) = \mathfrak{d})$

Let $1 \leq n \in \mathbb{N}$, and $\{X_i : i < n\}$ be a sequence of subsets of $\overline{\mathbb{N}}^{\mathbb{N}}$ with size \mathfrak{d} and containing \mathbb{Q}_{∞} . If $\prod_{i < n} X_i$ is *n*- \mathfrak{d} -unbounded, then $\prod_{i < n} X_i$ is Menger.

♬▶ ◀ ☱ ▶ ◀

Tools for constructing Menger space

Definition

Let
$$1 \leq n \in \mathbb{N}$$
 and $\{X_i \in [\overline{\mathbb{N}}^{\uparrow \mathbb{N}}]^{\mathfrak{d}} : i < n\}$. We call $\prod_{i < n} X_i$ is
n-0-unbounded if for each $g \in \mathbb{N}^{\mathbb{N}}$, there are $A_i \in [X_i]^{<\mathfrak{d}}$ such that for any $\vec{x} \in \prod_{i < n} (X_i \setminus A_i)$, $\min(\vec{x}) \not\leq^* g$.

Lemma $(cf(\mathfrak{d}) = \mathfrak{d})$

Let $1 \leq n \in \mathbb{N}$, and $\{X_i : i < n\}$ be a sequence of subsets of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ with size \mathfrak{d} and containing \mathbb{Q}_{∞} . If $\prod_{i < n} X_i$ is *n*- \mathfrak{d} -unbounded, then $\prod_{i < n} X_i$ is Menger.

Construction of subgroup of $\mathbb R$

n=2, subgroup of \mathbb{R}^{ω} :

Theorem $(cov(\mathcal{M}) = \mathfrak{d})$

There exists a Menger subgroup G of \mathbb{R}^{ω} such that G^2 is not Menger.

Sketch of proof.

 $P = \{ p \in \mathbb{R}^{\omega} : \forall k < \omega(p(k) \in \mathbb{Q}) \& \exists l < \omega \forall k \ge l(p(k) = 0) \}$ = $\{ p_k : k < \omega \}.$

 P_0 : a maximal linear independent subset of P.

 $\mathcal{D} = \{f_{\alpha} : \alpha < \mathfrak{d}\}$: a dominating family and also closed under finite modification.

For each $\alpha < \mathfrak{d}$, define

$$W_{f_{\alpha}} = \bigcap_{g = *f_{\alpha}} \bigcup_{k < \omega} \mathcal{B}_{\rho}(p_k, \frac{1}{g(k) + 1}).$$

Construction of subgroup of $\mathbb R$

n=2, subgroup of \mathbb{R}^{ω} :

Theorem $(cov(\mathcal{M}) = \mathfrak{d})$

There exists a Menger subgroup G of \mathbb{R}^{ω} such that G^2 is not Menger.

Sketch of proof.

$$P = \{ p \in \mathbb{R}^{\omega} : \forall k < \omega(p(k) \in \mathbb{Q}) \& \exists l < \omega \forall k \ge l(p(k) = 0) \}$$

= $\{ p_k : k < \omega \}.$

 P_0 : a maximal linear independent subset of P.

 $\mathcal{D} = \{f_\alpha : \alpha < \mathfrak{d}\}: \text{ a dominating family and also closed under finite modification.}$

For each $\alpha < \mathfrak{d}$, define

$$W_{f_{\alpha}} = \bigcap_{g = *f_{\alpha}} \bigcup_{k < \omega} \mathcal{B}_{\rho}(p_k, \frac{1}{g(k) + 1}).$$

Proof.

Construct { $x_{\alpha}, y_{\alpha} \in \mathbb{R}^{\omega} : \alpha < \mathfrak{d}$ } by transfinite recursion. H_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta < \alpha$ } G_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta \leq \alpha$ }. $G = \bigcup_{\alpha < \mathfrak{d}} G_{\alpha}$. By induction, we will make sure that the following requirements are satisfied.

(1) For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_\beta, y_\beta : \beta \le \alpha\}$ is linear independent. (2) For any $\alpha < \mathfrak{d}$, $k < \omega$, $|x_\alpha(k)| + |y_\alpha(k)| > f_\alpha(k)$. (3) For any $\alpha < \mathfrak{d}$, $k < \omega$, if $x \in C$, H, then $x \in W$.

Proof.

Construct { $x_{\alpha}, y_{\alpha} \in \mathbb{R}^{\omega} : \alpha < \mathfrak{d}$ } by transfinite recursion. H_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta < \alpha$ } G_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta \leq \alpha$ }. $G = \bigcup_{\alpha < \mathfrak{d}} G_{\alpha}$. By induction, we will make sure that the following requirements are satisfied.

(1) For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_\beta, y_\beta : \beta \le \alpha\}$ is linear independent.

(2) For any $\alpha < \mathfrak{d}$, $k < \omega$, $|x_{\alpha}(k)| + |y_{\alpha}(k)| > f_{\alpha}(k)$.

(3) For any $\gamma \leq \alpha < \mathfrak{d}$. If $x \in G_{\alpha} \setminus H_{\gamma}$, then $x \in W_{f_{\gamma}}$

Proof.

Construct { $x_{\alpha}, y_{\alpha} \in \mathbb{R}^{\omega} : \alpha < \mathfrak{d}$ } by transfinite recursion. H_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta < \alpha$ } G_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta \leq \alpha$ }. $G = \bigcup_{\alpha < \mathfrak{d}} G_{\alpha}$. By induction, we will make sure that the following requirements are satisfied.

- (1) For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_\beta, y_\beta : \beta \le \alpha\}$ is linear independent.
- (2) For any $\alpha < \mathfrak{d}$, $k < \omega$, $|x_{\alpha}(k)| + |y_{\alpha}(k)| > f_{\alpha}(k)$.

(3) For any $\gamma \leq \alpha < \mathfrak{d}$. If $x \in G_{\alpha} \setminus H_{\gamma}$, then $x \in W_{f_{\gamma}}$.

Proof.

Construct { $x_{\alpha}, y_{\alpha} \in \mathbb{R}^{\omega} : \alpha < \mathfrak{d}$ } by transfinite recursion. H_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta < \alpha$ } G_{α} : the group generated by { $x_{\beta}, y_{\beta} : \beta \leq \alpha$ }. $G = \bigcup_{\alpha < \mathfrak{d}} G_{\alpha}$. By induction, we will make sure that the following requirements are satisfied.

- (1) For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_\beta, y_\beta : \beta \le \alpha\}$ is linear independent.
- (2) For any $\alpha < \mathfrak{d}$, $k < \omega$, $|x_{\alpha}(k)| + |y_{\alpha}(k)| > f_{\alpha}(k)$.
- (3) For any $\gamma \leq \alpha < \mathfrak{d}$. If $x \in G_{\alpha} \setminus H_{\gamma}$, then $x \in W_{f_{\gamma}}$.

Construction of subgroup of $\mathbb R$

$n \geq 3$, subgroup of \mathbb{R} :

Lemma

Let $C \in \mathbb{Z}^{m \times (n+1)}$ with $rank(C) = m \le n$, $\vec{q} \in \mathbb{R}^m$ and $f \in \mathbb{N}^{\mathbb{N}}$. Then there exists $\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1}$ such that $\vec{y} \cdot C^T = \vec{q}$ and $\sum_{j \le n} |h(y_j)(k)| > f(k)$ for all $k \in \mathbb{N}$.

Lemma

Let $f \in \mathbb{N}^{\mathbb{N}}$, $Y = \{\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1} : \forall k \in \mathbb{N} (\sum_{j \leq n} |h(y_j)(k)| > f(k))\},\$ $C \in \mathbb{Z}^{m \times (n+1)}$ with $rank(C) = m \leq n$ and W be comeager subset of \mathbb{R}^m . Then $\{\vec{y} \in Y : \vec{y} \cdot C^T \in W\}$ is comeager set in Y.

Construction of subgroup of $\mathbb R$

$n \geq 3$, subgroup of \mathbb{R} :

Lemma

Let $C \in \mathbb{Z}^{m \times (n+1)}$ with $rank(C) = m \le n$, $\vec{q} \in \mathbb{R}^m$ and $f \in \mathbb{N}^{\mathbb{N}}$. Then there exists $\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1}$ such that $\vec{y} \cdot C^T = \vec{q}$ and $\sum_{j \le n} |h(y_j)(k)| > f(k)$ for all $k \in \mathbb{N}$.

Lemma

Let
$$f \in \mathbb{N}^{\mathbb{N}}$$
,
 $Y = \{\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1} : \forall k \in \mathbb{N} (\sum_{j \leq n} |h(y_j)(k)| > f(k))\},\$
 $C \in \mathbb{Z}^{m \times (n+1)}$ with $rank(C) = m \leq n$ and W be comeager
subset of \mathbb{R}^m . Then $\{\vec{y} \in Y : \vec{y} \cdot C^T \in W\}$ is comeager set in Y .

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

 $WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$

 $(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

- $W_0 = W$ and $\vec{x}_0 = \vec{x}$.
- For any j < k,

 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$ and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1}-r_j).$

We call $ec{x}$ is W-rich if $ec{x}_k \in W_k$ for any $ec{r}$ and $ec{\mathcal{A}}_{\cdot}$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

 $(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$

Definition

 $W \subseteq \mathbb{R}^n$: comeager set, $\vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1$, $\vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}$: invertible matrixes and $\vec{x} \in \mathbb{R}^n$.

- $W_0 = W$ and $\vec{x}_0 = \vec{x}$.
- For any j < k,

 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$ and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1}-r_j).$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

 $W \subseteq \mathbb{R}^n$: comeager set, $\vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1$, $\vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}$: invertible matrixes and $\vec{x} \in \mathbb{R}^n$.

- $W_0 = W$ and $\vec{x}_0 = \vec{x}$.
- For any j < k,

 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$ and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1}-r_j).$

We call $ec{x}$ is W-rich if $ec{x}_k \in W_k$ for any $ec{r}$ and $ec{\mathcal{A}}_{\cdot}$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

- $W_0 = W$ and $\vec{x}_0 = \vec{x}$.
- For any j < k, $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$ and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1}-r_j).$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

• $W_0 = W$ and $\vec{x}_0 = \vec{x}$.

• For any
$$j < k$$
,
 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$
and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1}-r_j)$.

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

•
$$W_0 = W$$
 and $\vec{x}_0 = \vec{x}$.

• For any
$$j < k$$
,
 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$
and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1} - r_j).$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

•
$$W_0 = W$$
 and $\vec{x}_0 = \vec{x}$.

• For any
$$j < k$$
,
 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$
and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1} - r_j).$

Definition

Let $W \subseteq \mathbb{R}^n$ be comeager set, $A \in \mathbb{Q}^{n^2}$ be invertible matrix, $\vec{x} \in \mathbb{R}^m$ and $1 \le m \le n-1$.

$$WA = \{ \vec{x} \cdot A : \vec{x} \in W \}.$$

$$(WA)_{\vec{x}} = \{ \vec{z} \in \mathbb{R}^{n-m} : \vec{z} \oplus \vec{x} \in WA \}.$$

Definition

$$\begin{split} W \subseteq \mathbb{R}^n: \text{ comeager set, } \vec{r}: r_0 = 0 < r_1 < r_2 < \cdots < r_k < n-1, \\ \vec{\mathcal{A}} = \{A_j \in \mathbb{Q}^{(n-r_j)^2}: j < k\}: \text{ invertible matrixes and } \vec{x} \in \mathbb{R}^n. \end{split}$$

•
$$W_0 = W$$
 and $\vec{x}_0 = \vec{x}$.

• For any
$$j < k$$
,
 $W_{j+1} = \{ \vec{y} \in \mathbb{R}^{n-r_{j+1}} : (W_j A_j)_{\vec{y}} \text{ is comeager in } \mathbb{R}^{r_{j+1}-r_j} \}$
and $\vec{x}_{j+1} = \vec{x}_j A_j | (n-r_j) \setminus (r_{j+1} - r_j).$

Properties of W-rich

Lemma

Let
$$f \in \mathbb{N}^{\mathbb{N}}$$
,
 $Y = \{\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1} : \forall k \in \mathbb{N} (\sum_{j \leq n} |h(y_j)(k)| > f(k))\},\$
 $C \in \mathbb{Z}^{n \times (n+1)}, \vec{z} \in \mathbb{R}^n$, and W be comeager in \mathbb{R}^n . If \vec{z} is W -rich,
then $\{\vec{y} \in Y : \vec{z} + \vec{y} \cdot C^T \text{ is } W$ -rich} is comeager in Y .

_emma

Let $W \subseteq \mathbb{R}^n$ be comeager. If $\vec{0} \in W$ and $W_{\vec{0}|n\setminus r}$ is comeager in \mathbb{R}^r for any $1 \leq r < n$. Then $\vec{0}$ is W-rich.

- ∢ ≣ ▶

Properties of W-rich

Lemma

Let
$$f \in \mathbb{N}^{\mathbb{N}}$$
,
 $Y = \{\vec{y} \in (\mathbb{R}/\mathbb{Q})^{n+1} : \forall k \in \mathbb{N} (\sum_{j \leq n} |h(y_j)(k)| > f(k))\},\$
 $C \in \mathbb{Z}^{n \times (n+1)}, \vec{z} \in \mathbb{R}^n$, and W be comeager in \mathbb{R}^n . If \vec{z} is W -rich,
then $\{\vec{y} \in Y : \vec{z} + \vec{y} \cdot C^T \text{ is } W$ -rich} is comeager in Y .

Lemma

Let $W \subseteq \mathbb{R}^n$ be comeager. If $\vec{0} \in W$ and $W_{\vec{0}|n\setminus r}$ is comeager in \mathbb{R}^r for any $1 \leq r < n$. Then $\vec{0}$ is W-rich.

Construction of subgroup of $\mathbb R$

Theorem $(cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d}))$

For any $n \ge 1$, There is a subgroup G of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Sketch of proof.

$$\begin{split} &\mathbb{R}/\mathbb{Q}: \ \left\{ \ 0 \ \right\} \cup \left(\mathbb{R} \setminus \mathbb{Q} \right) \\ &h: \mathbb{R}/\mathbb{Q} \to \overline{\mathbb{N}}^{\uparrow \mathbb{N}} : \text{ a fixed homeomorphism embedding with} \\ &h(\mathbb{Q}[\sqrt{2}]/\mathbb{Q}) = \mathbb{Q}_{\infty}. \\ &P_0: \text{ a maximal linear independent subset of } \mathbb{Q}[\sqrt{2}]/\mathbb{Q}. \\ &\mathcal{D} = \left\{ f_\alpha : \alpha < \mathfrak{d} \right\}: \text{ a dominating family and also closed under finite modification.} \end{split}$$

 $W_{f_{\alpha}} = \{ \vec{x} \in (\mathbb{R}/\mathbb{Q})^n : \exists^{\infty} p \in \mathbb{N} \left(f_{\alpha}(p) < \min\{h(x_i)(p) : i < n\} \right) \}$

Construction of subgroup of $\mathbb R$

Theorem $(cov(\mathcal{M}) = \mathfrak{d} = cf(\mathfrak{d}))$

For any $n \ge 1$, There is a subgroup G of \mathbb{R} such that G^n is Menger but G^{n+1} is not Menger.

Sketch of proof.

$$\begin{split} &\mathbb{R}/\mathbb{Q}: \ \{ \ 0 \ \} \cup (\mathbb{R} \setminus \mathbb{Q}) \\ &h \colon \mathbb{R}/\mathbb{Q} \to \overline{\mathbb{N}}^{\uparrow \mathbb{N}} : \text{ a fixed homeomorphism embedding with} \\ &h(\mathbb{Q}[\sqrt{2}]/\mathbb{Q}) = \mathbb{Q}_{\infty}. \\ &P_0: \text{ a maximal linear independent subset of } \mathbb{Q}[\sqrt{2}]/\mathbb{Q}. \\ &\mathcal{D} = \{ f_\alpha : \alpha < \mathfrak{d} \}: \text{ a dominating family and also closed under finite modification.} \end{split}$$

For each $\alpha < \mathfrak{d}$, define

$$W_{f_{\alpha}} = \{ \vec{x} \in (\mathbb{R}/\mathbb{Q})^n : \exists^{\infty} p \in \mathbb{N} \left(f_{\alpha}(p) < \min\{h(x_i)(p) : i < n\} \right) \}.$$
Proof.

- $G_{\alpha} \subseteq \mathbb{R}/\mathbb{Q}$.
- For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_{\beta,j} : \beta \le \alpha, j \le n\}$ is linearly independent.
- For any $\alpha < \mathfrak{d}$, $k \in \mathbb{N}$, $\sum_{j \leq n} |h(x_{\alpha,j})(k)| > f_{\alpha}(k)$.
- For any $\gamma \leq \alpha < \mathfrak{d}$ and $\vec{x} \in (\{0\} \cup (G_{\alpha} \setminus H_{\gamma}))^n$, \vec{x} is $W_{f_{\gamma}}$ -rich.

Proof.

- $G_{\alpha} \subseteq \mathbb{R}/\mathbb{Q}$.
- For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_{\beta,j} : \beta \le \alpha, j \le n\}$ is linearly independent.
- For any $\alpha < \mathfrak{d}$, $k \in \mathbb{N}$, $\sum_{j \leq n} |h(x_{\alpha,j})(k)| > f_{\alpha}(k)$.
- For any $\gamma \leq \alpha < \mathfrak{d}$ and $\vec{x} \in (\{0\} \cup (G_{\alpha} \setminus H_{\gamma}))^n$, \vec{x} is $W_{f_{\gamma}}$ -rich.

Proof.

- $G_{\alpha} \subseteq \mathbb{R}/\mathbb{Q}$.
- For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_{\beta,j} : \beta \le \alpha, j \le n\}$ is linearly independent.
- For any $\alpha < \mathfrak{d}$, $k \in \mathbb{N}$, $\sum_{j \leq n} |h(x_{\alpha,j})(k)| > f_{\alpha}(k)$.
- For any $\gamma \leq \alpha < \mathfrak{d}$ and $\vec{x} \in (\{0\} \cup (G_{\alpha} \setminus H_{\gamma}))^n$, \vec{x} is $W_{f_{\gamma}}$ -rich.

Proof.

- $G_{\alpha} \subseteq \mathbb{R}/\mathbb{Q}$.
- For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_{\beta,j} : \beta \le \alpha, j \le n\}$ is linearly independent.
- For any $\alpha < \mathfrak{d}$, $k \in \mathbb{N}$, $\sum_{j \leq n} |h(x_{\alpha,j})(k)| > f_{\alpha}(k)$.
- For any $\gamma \leq \alpha < \mathfrak{d}$ and $\vec{x} \in (\{0\} \cup (G_{\alpha} \setminus H_{\gamma}))^n$, \vec{x} is $W_{f_{\gamma}}$ -rich.

Proof.

- $G_{\alpha} \subseteq \mathbb{R}/\mathbb{Q}$.
- For any $\alpha < \mathfrak{d}$, $P_0 \cup \{x_{\beta,j} : \beta \le \alpha, j \le n\}$ is linearly independent.
- For any $\alpha < \mathfrak{d}$, $k \in \mathbb{N}$, $\sum_{j \leq n} |h(x_{\alpha,j})(k)| > f_{\alpha}(k)$.
- For any $\gamma \leq \alpha < \mathfrak{d}$ and $\vec{x} \in (\{ 0 \} \cup (G_{\alpha} \setminus H_{\gamma}))^n$, \vec{x} is $W_{f_{\gamma}}$ -rich.

Thanks for your attention!

▲ 同 ▶ → ● 三

æ