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Definition
Let A be a countable structure. We say that A has finite big Ramsey
degrees if for every n ∈ ω there is D(n) ∈ ω such that for every finite
coloring of [A]n there is a copy B of A (inside of A)
such that [B]n has at most D(n) colors.

Example

I (ω, no structure) (Ramsey)
I (Q, <) (Galvin, Laver, Devlin)
I Random (Rado) graph (Todorčević, Sauer)
I Triangle free Henson graph H3 (Dobrinen, Hubička)
I Random 3-hypergraph (BHChKV)
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Trees

� rooted
� height at most ω . . . h(T ) ≤ ω

� finitely branching
� balanced (no short branches)
� n-th level of T . . . T (n)
� initial subtree . . . T (<n)
� set of immediate successors of s in T . . . isuT (s)

Definition
A subtree S of T of height h(S) ∈ ω + 1 is a strong subtree if

� ∀n < h(S) ∃m < h(T ) such that S(n) ⊆ T (m),
� ∀s ∈ S ∀t ∈ isuT (s) ∃!(s� ∈ S, s� ≥ t, s� ∈ isuS(s)),

unless isuS(s) = ∅.
We write S ∈ STRn(T ).
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Definition
A subtree S of T of height h(S) ∈ ω + 1 is a strong subtree if

� ∀n < h(S) ∃m < h(T ) such that S(n) ⊆ T (m),
� ∀s ∈ S ∀t ∈ isuT (s) ∃!(s� ∈ S, s� > t, s� ∈ isuS(s)),

unless isuS(s) = ∅.
We write S ∈ STRn(T ).

If S ∈ STRn(T ) and R ∈ STRm(S), then R ∈ STRm(T ).

Theorem (Milliken, simple version)
If T is a tree of height ω, n, k ∈ ω, and χ : STRn(T ) → k
is a finite coloring, then there exists S ∈ STRω(T )
such that χ is monochromatic on STRn(S).



Trees, examples

Example
TB = 2<ω , the binary tree

Observation
If S ∈ STRn(TB), then S is isomorphic to TB(<n).



Trees, examples

Example
TM =

�{ 2n×n : n ∈ ω }, ordered by extension. The tree of matrices.

TSM ⊂ TM, the tree of sub-diagonal matrices.
If A ∈ TSM and A(i, j) �= 0, then i < j.

For A ∈ TM(n) we write |A| = n.
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Random graph has finite big Ramsey degrees
For s, t ∈ TB define E(s, t) if |s| < |t| and t(|s|) = 1.
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Random graph has finite big Ramsey degrees
For s, t ∈ TB define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition
The graph (TB, E) is universal (for the class of all countable graphs).

Observation
If S ∈ STRω(TB), then (S, E) is a copy of (TB, E)
(both as a graph and as a tree).

Lemma
For every n ∈ ω and a ∈ [TB]

n there exists
SB ∈ STR2n(TB) such that a ⊂ SB.

SB has size 22n − 1. I.e. [SB]n has size < (22n)n.

Proof
Given finite coloring χ : [TB]

n → k.
Induces finite coloring χ̄ : STR2n(TB) → k(2

2n)n .
Use Milliken’s theorem to find S ∈ STRω(TB),
a χ̄-monochromatic copy of TB.



Universal 3-hypergraphs have finite big Ramsey degrees
For A,B,C ∈ TSM define E(A,B,C) is |A| < |B| < |C| and
C(|A|, |B|) = 1.
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Universal 3-hypergraphs have finite big Ramsey degrees
For A,B,C ∈ TSM define E(A,B,C) is |A| < |B| < |C| and
C(|A|, |B|) = 1.

Proposition
The hypergraph (TSM, E) is universal (for countable 3-hypergraphs).

Observation
If S ∈ STRω(TSM), then (S, E) is not a copy of (TSM, E).
(It is wider and we can find a copy of TSM inside S.)

Problem
For S ∈ STR2n(TSM) there is no bound on the size of S.
I.e. a finite coloring χ : [TSM]

n → k does not induce
a finite coloring χ̄ of STR2n(TSM).



Product trees

TSM ⊗ TB . . . the product tree

Definition
We say that SSM ⊗ SB ∈ STRk(TSM ⊗ TB)
(SSM ⊗ SB is a strong subtree of TSM ⊗ TB) if
� SSM ∈ STRk(TSM),
� SB ∈ STRk(TB), and
� ∀n ∈ k ∃m ∈ ω such that

SSM(n) ⊆ TSM(m) and SB(n) ⊆ TB(m).



Product trees

TSM ⊗ TB . . . the product tree

Definition
We say that SSM ⊗ SB ∈ STRk(TSM ⊗ TB)
(SSM ⊗ SB is a strong subtree of TSM ⊗ TB) if
� SSM ∈ STRk(TSM),
� SB ∈ STRk(TB), and
� ∀n ∈ k ∃m ∈ ω such that

SSM(n) ⊆ TSM(m) and SB(n) ⊆ TB(m).

Theorem (Milliken, special case)
If n, k ∈ ω and χ : STRn(TSM ⊗ TB) → k is a finite coloring,
then there exists SSM ⊗ SB ∈ STRω(TSM ⊗ TB)
such that χ is monochromatic on STRn(SSM ⊗ SB).



Valuations
Suppose SSM ⊗ SB ∈ STRk(TSM ⊗ TB) for some k ∈ ω + 1.
We define the tree val(SSM ⊗ SB) ⊆ SSM by induction:

� The root of val(SSM ⊗ SB) is the root of SSM.
� If A ∈ val(SSM ⊗ SB), t ∈ SB(|A|), C ∈ isuSSM(A),

and C > A�t , then C ∈ val(SSM ⊗ SB).

�
0 0
0 0

�
00




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




10




0 0 0 0
0 0 0 0
1 0 0 0
1 1 0 0




val(S1, S2)S2S1

T



Valuations
Suppose SSM ⊗ SB ∈ STRk(TSM ⊗ TB) for some k ∈ ω + 1.
We define the tree val(SSM ⊗ SB) ⊆ SSM by induction:

� The root of val(SSM ⊗ SB) is the root of SSM.
� If A ∈ val(SSM ⊗ SB), t ∈ SB(|A|), C ∈ isuSSM(A),

and C > A�t , then C ∈ val(SSM ⊗ SB).

Observation
If SSM ⊗ SB ∈ STRk(TSM ⊗ TB),
then (val(SSM ⊗ SB), E) is a copy of (TSM(< k), E)
(both as a hypergraph and as a tree).

Lemma (false but fixable)
For every n ∈ ω and a ∈ [TSM]

n there exists
SSM ⊗ SB ∈ STR2n(TSM ⊗ TB) such that a ⊂ val(SSM ⊗ SB).



Observation
If SSM ⊗ SB ∈ STRk(TSM ⊗ TB),
then (val(SSM ⊗ SB), E) is a copy of (TSM(< k), E)
(both as a hypergraph and as a tree).

Lemma (false but fixable)
For every n ∈ ω and a ∈ [TSM]

n there exists
SSM ⊗ SB ∈ STR2n(TSM ⊗ TB) such that a ⊂ val(SSM ⊗ SB).

Proof
Given finite coloring χ : [TSM]

n → k.
Induces finite coloring χ̄ : STRN(TSM ⊗ TB) → K
(look at colors on valuations).
Use Milliken’s theorem.


