Big Ramsey degrees of 3-uniform hypergraphs are finite

David Chodounský

Charles University

Joint work with M. Balko, J. Hubička, M. Konečný, and L. Vena

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Martin Balko, David Chodounský, Jan Hubička, Matěj Konečný, Lluis Vena, Big Ramsey degrees of 3-uniform hypergraphs are finite, https://arxiv.org/abs/2008.00268

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let **A** be a countable structure. We say that **A** has *finite big Ramsey degrees* if for every $n \in \omega$ there is $D(n) \in \omega$ such that for every finite coloring of $[\mathbf{A}]^n$ there is a copy **B** of **A** (inside of **A**) such that $[\mathbf{B}]^n$ has at most D(n) colors.

Example

- (ω , no structure)
- ► (Q,<)
- Random (Rado) graph
- Triangle free Henson graph \mathbb{H}_3
- Random 3-hypergraph

(Ramsey)

(Galvin, Laver, Devlin)

(Todorčević, Sauer)

(Dobrinen, Hubička)

(BHChKV)

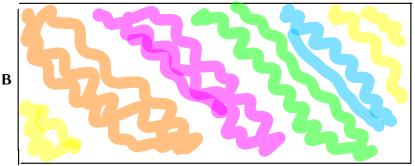
Definition

A structure $\mathbf{A} \in \mathcal{C}$ is universal (for a class of structures \mathcal{C})

if A contains a copy of every $B \in \mathcal{C}$.

A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of every $B \in C$.

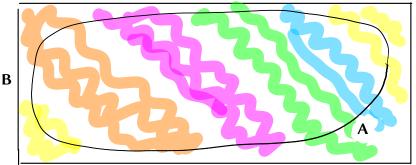
Proposition


If $A,B\in \mathcal{C}$ are both universal for $\mathcal C$ and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

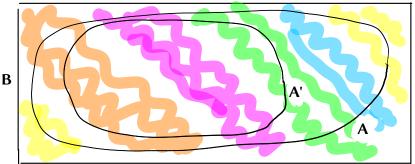
A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of every $B \in C$.

Proposition


If $A,B\in \mathcal{C}$ are both universal for $\mathcal C$ and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

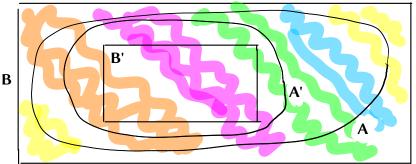
A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of every $B \in C$.

Proposition


If $A,B\in \mathcal{C}$ are both universal for $\mathcal C$ and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of every $B \in C$.

Proposition


If $A,B\in \mathcal{C}$ are both universal for $\mathcal C$ and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

A structure $A \in C$ is universal (for a class of structures C) if A contains a copy of every $B \in C$.

Proposition

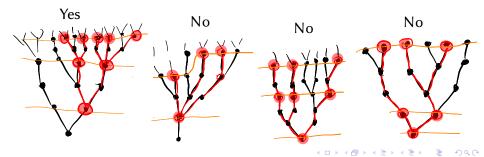
If $A,B\in \mathcal{C}$ are both universal for $\mathcal C$ and A has finite big Ramsey degrees, then B also has finite big Ramsey degrees.

Trees

- rooted
- height at most $\omega \quad \dots \quad h(T) \leq \omega$
- finitely branching
- balanced (no short branches)
- *n*-th level of T ... T(n)
- initial subtree ... T(< n)
- ▶ set of immediate successors of *s* in *T* ... $isu_T(s)$

Definition

A subtree *S* of *T* of height $h(S) \in \omega + 1$ is a *strong subtree* if


- ► $\forall n < h(S) \exists m < h(T)$ such that $S(n) \subseteq T(m)$,
- ► $\forall s \in S \ \forall t \in isu_T(s) \exists ! (s' \in S, s' \ge t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

A subtree *S* of *T* of height $h(S) \in \omega + 1$ is a *strong subtree* if

- ► $\forall n < h(S) \exists m < h(T)$ such that $S(n) \subseteq T(m)$,
- ► $\forall s \in S \ \forall t \in isu_T(s) \ \exists ! (s' \in S, s' > t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

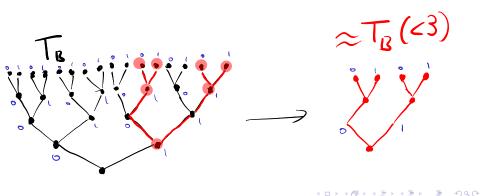
A subtree S of T of height $h(S) \in \omega + 1$ is a strong subtree if

- ► $\forall n < h(S) \exists m < h(T)$ such that $S(n) \subseteq T(m)$,
- ► $\forall s \in S \ \forall t \in isu_T(s) \ \exists ! (s' \in S, s' > t, s' \in isu_S(s)),$ unless $isu_S(s) = \emptyset$.

We write $S \in STR_n(T)$.

If $S \in STR_n(T)$ and $R \in STR_m(S)$, then $R \in STR_m(T)$.

Theorem (Milliken, simple version)

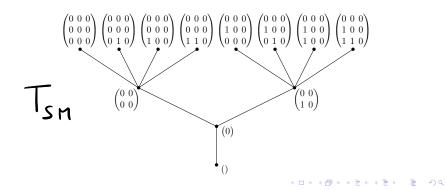

If T is a tree of height ω , $n, k \in \omega$, and $\chi : STR_n(T) \to k$ is a finite coloring, then there exists $S \in STR_{\omega}(T)$ such that χ is monochromatic on $STR_n(S)$.

(日)

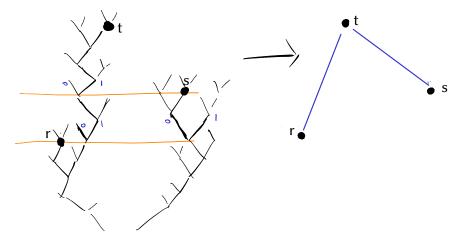
Trees, examples

Example $\mathbf{T}_B = 2^{<\omega}$, the binary tree

Observation If $S \in STR_n(\mathbf{T}_B)$, then S is isomorphic to $\mathbf{T}_B(< n)$.


Trees, examples

Example


 $\mathbf{T}_{M} = \bigcup \{ 2^{n \times n} : n \in \omega \}$, ordered by extension. The tree of matrices.

 $\mathbf{T}_{SM} \subset \mathbf{T}_M$, the tree of sub-diagonal matrices. If $A \in \mathbf{T}_{SM}$ and $A(i, j) \neq 0$, then i < j.

For $A \in \mathbf{T}_{\mathcal{M}}(n)$ we write |A| = n.

Random graph has finite big Ramsey degrees For $s, t \in T_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Random graph has finite big Ramsey degrees For $s, t \in T_B$ define E(s, t) if |s| < |t| and t(|s|) = 1. Proposition The graph (T_B, E) is universal (for the class of all countable graphs).

▲□▶▲圖▶▲≣▶▲≣▶ ■ の�?

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (T_B, E) is universal (for the class of all countable graphs).

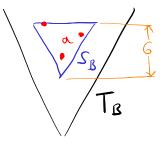
< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition


The graph (\mathbf{T}_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

Lemma

For every $n \in \omega$ and $a \in [\mathbf{T}_B]^n$ there exists $S_B \in STR_{2n}(\mathbf{T}_B)$ such that $a \subset S_B$.

イロト 不得 とく ヨト イヨト

For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (\mathbf{T}_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).

Lemma

For every $n \in \omega$ and $a \in [\mathbf{T}_B]^n$ there exists $S_B \in STR_{2n}(\mathbf{T}_B)$ such that $a \subset S_B$. S_B has size $2^{2n} - 1$. I.e. $[S_B]^n$ has size $< (2^{2n})^n$.

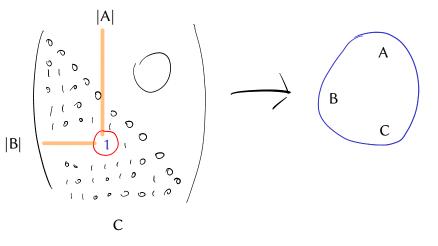
For $s, t \in \mathbf{T}_B$ define E(s, t) if |s| < |t| and t(|s|) = 1.

Proposition

The graph (\mathbf{T}_B, E) is universal (for the class of all countable graphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_B)$, then (S, E) is a copy of (\mathbf{T}_B, E) (both as a graph and as a tree).


Lemma

For every $n \in \omega$ and $a \in [\mathbf{T}_B]^n$ there exists $S_B \in STR_{2n}(\mathbf{T}_B)$ such that $a \subset S_B$. S_B has size $2^{2n} - 1$. I.e. $[S_B]^n$ has size $< (2^{2n})^n$.

Proof

Given finite coloring $\chi : [\mathbf{T}_B]^n \to k$. Induces finite coloring $\bar{\chi} : STR_{2n}(\mathbf{T}_B) \to k^{(2^{2n})^n}$. Use Milliken's theorem to find $S \in STR_{\omega}(\mathbf{T}_B)$, a $\bar{\chi}$ -monochromatic copy of \mathbf{T}_B . Universal 3-hypergraphs have finite big Ramsey degrees

For $A, B, C \in \mathbf{T}_{SM}$ define E(A, B, C) is |A| < |B| < |C| and C(|A|, |B|) = 1.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─ 釣�?

Universal 3-hypergraphs have finite big Ramsey degrees

For $A, B, C \in T_{SM}$ define E(A, B, C) is |A| < |B| < |C| and C(|A|, |B|) = 1.

Proposition

The hypergraph (\mathbf{T}_{SM}, E) is universal (for countable 3-hypergraphs).

Observation

If $S \in STR_{\omega}(\mathbf{T}_{SM})$, then (S, E) is not a copy of (\mathbf{T}_{SM}, E) . (It is wider and we can find a copy of \mathbf{T}_{SM} inside S.)

Problem

For $S \in STR_{2n}(\mathbf{T}_{SM})$ there is no bound on the size of *S*. I.e. a finite coloring $\chi : [\mathbf{T}_{SM}]^n \to k$ does not induce a finite coloring $\bar{\chi}$ of $STR_{2n}(\mathbf{T}_{SM})$.

Product trees

 $\mathbf{T}_{SM} \otimes \mathbf{T}_B$... the product tree Definition We say that $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ $(S_{SM} \otimes S_B \text{ is a strong subtree of } \mathbf{T}_{SM} \otimes \mathbf{T}_B)$ if ► $S_{SM} \in STR_k(\mathbf{T}_{SM}),$ \blacktriangleright $S_B \in STR_k(\mathbf{T}_B)$, and \blacktriangleright $\forall n \in k \exists m \in \omega$ such that $S_{SM}(n) \subseteq \mathbf{T}_{SM}(m)$ and $S_B(n) \subseteq \mathbf{T}_B(m)$. 7 NSW 0 0 0 0 0 0 **0 0** 0 0 0 0 0

Product trees

 $\mathbf{T}_{SM} \otimes \mathbf{T}_B$... the product tree

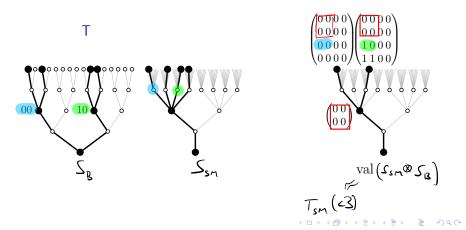
Definition

We say that $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$

 $(S_{SM} \otimes S_B \text{ is a strong subtree of } \mathbf{T}_{SM} \otimes \mathbf{T}_B)$ if

- $\triangleright S_{SM} \in STR_k(\mathbf{T}_{SM}),$
- ▶ $S_B \in STR_k(\mathbf{T}_B)$, and

► $\forall n \in k \exists m \in \omega$ such that $S_{SM}(n) \subseteq \mathbf{T}_{SM}(m)$ and $S_B(n) \subseteq \mathbf{T}_B(m)$.


Theorem (Milliken, special case)

If $n, k \in \omega$ and χ : $STR_n(\mathbf{T}_{SM} \otimes \mathbf{T}_B) \to k$ is a finite coloring, then there exists $S_{SM} \otimes S_B \in STR_{\omega}(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ such that χ is monochromatic on $STR_n(S_{SM} \otimes S_B)$.

Valuations

Suppose $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ for some $k \in \omega + 1$. We define the tree $val(S_{SM} \otimes S_B) \subseteq S_{SM}$ by induction:

- The root of $val(S_{SM} \otimes S_B)$ is the root of S_{SM} .
- ▶ If $A \in val(S_{SM} \otimes S_B)$, $t \in S_B(|A|)$, $C \in isu_{S_{SM}}(A)$, and $C > A^{\uparrow}t$, then $C \in val(S_{SM} \otimes S_B)$.

Valuations

Suppose $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ for some $k \in \omega + 1$. We define the tree $val(S_{SM} \otimes S_B) \subseteq S_{SM}$ by induction:

- The root of $val(S_{SM} \otimes S_B)$ is the root of S_{SM} .
- ▶ If $A \in val(S_{SM} \otimes S_B)$, $t \in S_B(|A|)$, $C \in isu_{S_{SM}}(A)$, and $C > A^{\uparrow}t$, then $C \in val(S_{SM} \otimes S_B)$.

Observation

If $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$, then $(val(S_{SM} \otimes S_B), E)$ is a copy of $(\mathbf{T}_{SM}(< k), E)$ (both as a hypergraph and as a tree).

Lemma (false but fixable)

For every $n \in \omega$ and $a \in [\mathbf{T}_{SM}]^n$ there exists $S_{SM} \otimes S_B \in STR_{2n}(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ such that $a \subset val(S_{SM} \otimes S_B)$.

Observation

If $S_{SM} \otimes S_B \in STR_k(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$, then $(val(S_{SM} \otimes S_B), E)$ is a copy of $(\mathbf{T}_{SM}(< k), E)$ (both as a hypergraph and as a tree).

Lemma (false but fixable)

For every $n \in \omega$ and $a \in [\mathbf{T}_{SM}]^n$ there exists $S_{SM} \otimes S_B \in STR_{2n}(\mathbf{T}_{SM} \otimes \mathbf{T}_B)$ such that $a \subset val(S_{SM} \otimes S_B)$.

Proof

Given finite coloring χ : $[\mathbf{T}_{SM}]^n \to k$. Induces finite coloring $\bar{\chi}$: $STR_N(\mathbf{T}_{SM} \otimes \mathbf{T}_B) \to K$ (look at colors on valuations). Use Milliken's theorem.