On Extended Admissible Decision Procedures and Their Nonstandard Bayes Risk

Haosui Duanmu Department of Economics University of California, Berkeley

July 10, 2021

Joint work with Daniel Roy

Overview of the Talk

- **1** Give sufficient and necessary conditions to characterize frequentist optimality using Bayesian notions.
- 2 Raised by Wald 80 years ago and there exist a huge literature on this problem but they are subject to technical conditions.
- ³ We have resolved the problem under complete generality using nonstandard analysis.
- ⁴ This is the starting point of a programme to rework the foundations of statistical decision theory.

Statistical decision theory framework

Definition

A statistical decision problem consists of:

- **•** Sample space X, parameter space Θ , and action space A
- **2** Loss function $\ell : \Theta \times A \to \mathbb{R}_{\geq 0}$
- **3** Model ${P_\theta}_{\theta \in \Theta}$ where $P_\theta \in \mathcal{M}_1(X)$.

Definition

A randomized decision procedure is a map $\delta: X \to \mathcal{M}_1(\mathcal{A})$. Write $\delta(x, A)$ for $(\delta(x))(A)$.

 D : the set of randomized decision procedures.

Definition

The risk of δ at $\theta \in \Theta$ is $r(\theta, \delta) = \int_X [\int_A \ell(\theta, a) \delta(x, da)] P_\theta(\mathrm{d}x)$.

Frequentist admissibility

• δ is ϵ -dominated by δ' when

 $(\forall \theta \in \Theta)(r(\theta, \delta') \leq r(\theta, \delta) - \epsilon) \wedge (\exists \theta_0 \in \Theta)(r(\theta_0, \delta') \leq r(\theta_0, \delta) - \epsilon).$

- δ is ϵ -admissible if it is not ϵ -dominated by any $\delta' \in \mathcal{D}$.
- δ is **admissible** if δ is 0-admissible.
- δ is extended admissible if δ is ϵ -admissible for all $\epsilon \in \mathbb{R}_{>0}$.

Bayes optimality

Definition

Let $\delta \in \mathcal{D}$.

- A prior is a probability measure on Θ .
- The Bayes risk of δ with respect to a prior π is

$$
r(\pi,\delta)=\int_{\Theta}r(\theta,\delta)\,\pi(\mathrm{d}\theta).
$$

• δ is Bayes (optimal) if there exists a prior π such that $r(\pi, \delta) < \infty$ and $r(\pi, \delta) \leq r(\pi, \delta')$ for all $\delta' \in \mathcal{D}$.

Theorem (Wald)

Suppose Θ is finite. If δ_0 is extended admissible then δ_0 is Bayes.

Graphic proof of complete class theorem

risk set $S = \{ (r(\theta_1, \delta), \dots, r(\theta_n, \delta)) : \delta \in \mathcal{D} \}$ **lower quantant** $Q(\delta_0) = \{x \in \mathbb{R}^n : (\forall k \leq n)(x_k \leq r(\theta_k, \delta_0))\}$

Nonstandard real line

O Transfer Principle:

 $\mathbb{R} \models \phi(x_1, ..., x_n) \Leftrightarrow {}^*\mathbb{R} \models {}^*\phi({}^*x_1, ..., {}^*x_n).$

- \bullet κ -Saturation Principle: If a collection of statements are finitely satisfiable, then the whole collection can be satisfied simultaneously.
- Infinite and Infinitesimal Number: There exists $x \in {}^{\ast} \mathbb{R}$ such that $|x| > n$ for all $n \in \mathbb{N}$. Then $\frac{1}{x}$ is less than $\frac{1}{n}$ for all $n \in \mathbb{N}$

Two elements $x, y \in {}^*\mathbb{R}$ are **infinitely close**, written $x \approx y$, if $|x - y|$ is infinitesimal.

Hyperfinite Probability Space

Definition

A set A is **hyperfinite** if and only if there exists an internal bijection between A and $\{0, 1, ..., N-1\}$ for some $N \in \mathbb{N}$. This N is unique and is called the internal cardinality of A.

- A hyperfinite probability space is a triple $(\Omega, I(\Omega), P)$ such that
	- Ω is a hyperfinite set.
	- 2 $I(\Omega)$ is the collection of all hyperfinite subsets of Ω .
	- \bullet P : $I(\Omega) \rightarrow$ $^{*}[0,1]$ such that $P(\emptyset) = 0$, $P(\Omega) = 1$ and P is hyperfinitely additive.

Example

Let $\mathcal{T} = \{\frac{1}{N}\}$ $\frac{1}{N}$, $\frac{2}{N}$ $\frac{2}{N}, \ldots, 1\}$ for some $N \in {}^*\mathbb{N} \setminus \mathbb{N}$. Let $P(\{\omega\}) = \frac{1}{N}$ for every $\omega \in \mathcal{T}$. The Lebesgue measure of $A \subset [0,1]$ is the same as "counting" the number of points in T that are infinitely close to some points in A.

Nonstandard Bayes optimality

Definition

Let $\delta \in \mathcal{D}$.

- An internal prior is a *probability measure on $* \Theta$.
- The internal Bayes risk of $\delta \in \mathcal{D}$ with respect to an internal prior π is ${}^*r(\pi, {}^*\delta) = \int_{{}^*\Theta} {}^*r(t, {}^*\delta)\pi(\mathrm{d} t).$
- δ is nonstandard Bayes if there is an internal prior π such that ${}^*r(\pi, {}^*\delta) \lessapprox {}^*r(\pi, {}^*\delta')$ for all $\delta' \in \mathcal{D}$.

Theorem (Haosui–Roy)

 δ_0 is extended admissible if and only if δ_0 is nonstandard Bayes.

Nonstandard complete class theorem

By saturation, $T_{\Theta} = \{t_1, t_2, ..., t_K\}$ and $\Theta \subset T_{\Theta}$.
Define $Q(\Delta)_n = \{x \in I({^*\mathbb{R}^K}) : (\forall k \leq K)(x_k \leq {^*}r(t_k, \Delta) - \frac{1}{n}\}.$ By ext. admissibility, exists hyperplane separating $Q(^* \delta_0)_n$ and risk set for all $n \in \mathbb{N}$.

By saturation, exists hyperplane Π separating $\bigcup_{n\in\mathbb{N}} Q({}^*\delta_0)_n$ and risk set.

Hence. ${}^*\delta_0$ is nonstandard Bayes w.r.t Π normalized.

Constructing Standard Measures from Hyperfinite **Measures**

Hyperfinite probability spaces can be extended to standard countably additive probability spaces. In particular, let Θ be a Hausdorff space endowed with Borel σ -algebra $\mathcal{B}[\Theta]$ and Π be a nonstandard probability measure on [∗]Θ. We can construct:

- **1** A countably additive measure Π_p on $(\Theta, \mathcal{B}[\Theta])$. If Θ is compact, then Π_{p} is a probability measure.
- **2** A finitely additive probability measure Π^p on $(\Theta, \mathcal{B}[\Theta])$.

Example

Let $N \in {}^{*}\mathbb{N} \setminus \mathbb{N}$. Let Π be an internal probability measure concentrating on $\{\frac{1}{\Lambda}\}$ $\frac{1}{N}$ }. Then, Π_p is the degenerate measure on $\{0\}$ and Π^p is a finitely additive probability measure with $\Pi^p((0, \frac{1}{p}))$ $(\frac{1}{n})$) = 1 for every $n \in \mathbb{N}$.

Nonstandard Bayes risk and Standard Bayes risk

The following results establish connections between a nonstandard prior Π , Π _p and Π ^p.

Theorem (Haosui–Roy)

Suppose Θ is compact Hausdorff and risk functions are continuous. Let Π be an internal probability measure on T_{Θ} . Let $\delta_0 \in \mathcal{D}$. Then ${}^*r(\Pi, {}^*\delta_0) \approx r(\Pi_p, \delta_0)$, i.e., the Bayes risk of δ_0 with respect to Π_p is equal to the nonstandard Bayes risk of δ_0 with respect to Π up to an infinitesimal.

Theorem (Haosui–Roy)

Suppose risk functions are bounded. Let Π be an internal probability measure on T_{Θ} . Let $\delta_0 \in \mathcal{D}$. Then ${}^*r(\Pi, {}^*\delta_0) \approx r(\Pi^p, \delta_0)$, i.e., the Bayes risk of δ_0 with respect to Π^p is equal to the nonstandard Bayes risk of δ_0 with respect to Π up to an infinitesimal.

Standard results

Theorem (Haosui–Roy)

 δ_0 is extended admissible among D if and only if δ_0 is nonstandard Bayes among D.

Strong connections between Π, Π_p and Π^p generate the following two purely standard results.

Theorem (Haosui–Roy)

Suppose Θ is compact Hausdorff and risk functions are continuous. Then δ_0 is extended admissible among D if and only if δ_0 is Bayes among D.

Theorem (Sudderth–Heath)

Suppose Θ is measurable and risk functions are bounded. Then δ_0 is extended admissible among D if and only if δ_0 is f.a Bayes among D.

Conclusion

In this talk, I have

- **1** defined the term of nonstandard Bayes optimality.
- ² showed that extended admissibility is equivalent to nonstandard Bayes optimality.

³ established two standard results using our nonstandard theory.

This is the first step to rebuild foundation of statistical decision theory using nonstandard analysis.