The complexity of radicals in rings and modules

Huishan Wu

Chinese Annual Conference on Mathematical Logic 2021 Nankai University

July 9-11, 2021

Huishan Wu Beijing Language and Culture University

- Introduction
- Ideals in rings
- Radicals in rings
- Radicals in modules

(ロ) (日) (日) (日) (日)

Э

Introduction

Huishan Wu Beijing Language and Culture University

(ロ) (四) (E) (E) (E) (E)

- Van der Waerden (1930): study splitting algorithm of "explicitly given" fields.
- Church (1936), Kleene(1936), Turing(1937): provide formal definition of algorithm (i.e., finite procedure).
- Fröhlich and Shepherdson (1956): provide formal definition of explicit fields,
 - construct an explicit field with no splitting algorithm.
- Rabin (1960): study subgroups of computable groups, algebraic closures of computable fields,
 - every computable field has a computable algebraic closure.

イロン イヨン イヨン イヨン

- Computable functions (or sets): Turing computable, intuitive computable.
- Partial computable functions: $\varphi_0, \varphi_1, \cdots, \varphi_e, \cdots$.
- Computably enumerable sets (= Σ_1^0 sets): $W_0, W_1, \cdots, W_e, \cdots$.
 - $\emptyset' = \{e : \varphi_e(e) \downarrow\}$ (i.e., the Halting set) is Σ_1^0 -complete.
 - Fin= $\{e : |W_e| < \infty\}$ is Σ_2^0 -complete.
 - Inf= $\{e : |W_e| = \infty\}$ is Π_2^0 -complete.
- Computably enumerable trees: $T_0, T_1, \cdots, T_e, \cdots$
- WF= { $e: T_e$ is well-founded computable tree } is Π_1^1 -complete.

・ロト ・回ト ・ヨト ・ヨト

- (1) $\leq_{\mathcal{T}}$: Turing reducibility on subsets of \mathbb{N} .
- (2) $\equiv_{\mathcal{T}}$: Turing equivalence relation.
- (3) Turing degrees (or degrees): equivalence classes of $\equiv_{\mathcal{T}}$.
 - 0: the degree of computable sets;
 - **0**': the degree of Halting problem.
- (4) c.e. degrees.
- (5) PA degrees.
 - A set is PA if it can compute an infinite path of any infinite computable binary tree.

(4月) トイヨト イヨト

- RCA_0 : the base system that captures effective proofs.
 - $RCA_0 \vdash$ "every field has an algebraic closure".
- WKL₀ : RCA_0 + "for any X, there is a set Y that is of PA degree relative to X".
- ACA_0 : RCA_0 + "for any X, the Halting set X' relative to X exists".

A (10) × (10) × (10) ×

Ideals in rings

Huishan Wu Beijing Language and Culture University

<ロ> <同> <同> < 目> < 目> < 目> = 目

Computable ring

A computable ring is a computable set $R \subseteq \mathbb{N}$ together with computable binary operations $+_R$ and \cdot_R on R and elements 0_R , 1_R in R such that $(R, +_R, \cdot_R, 0_R, 1_R)$ satisfies axioms of a ring.

Examples:

•
$$\mathbb{Z}[x_1, x_2, \cdots, x_n], \mathbb{Q}[x_1, x_2, \cdots].$$

The ideal membership problem

Given a computable ring R, how about the complexity of its:

 maximal ideals, prime ideals, finitely generated ideals, or even general ideals...?

Friedman, Simpson, Smith (1983): Countable algebra and set existence axioms, Ann. Pure Appl. Logic.

Theorem(FSS, 1983)

Over RCA_0 , the following are equivalent.

(1) WKL₀.

(2) Any commutative ring contains a prime ideal.

Theorem(FSS, 1983)

Over RCA₀, the following are equivalent.

(1) ACA₀.

(2) Any commutative ring contains a maximal ideal.

Downey, Lempp, Mileti (2007): Ideals in computable rings, J. Algebra.

Theorem(DLM, 2007)

Over RCA_0 , the following are equivalent.

(1) WKL₀.

(2) Any commutative ring that is not a field has a nontrivial ideal.

Theorem (DLM, 2007)

The following are equivalent over RCA₀.

- (1) ACA₀.
- (2) Any commutative ring that is not a field has a nontrivial finitely generated ideal.

- A commutative ring containing no infinite ascending chain of ideals is called Noetherian.
- A commutative ring containing no infinite descending chain of ideals is called Artinian.

Theorem(Conidis, 2010)

There is a computable ring R containing an infinite uniformly computable increasing sequence $I_0 \subset I_1 \subset \cdots$ of ideals such that

- (1) every ideal $I \subseteq R$ that is not PA is computable, and it is equal to I_n for some $n \in \mathbb{N}$ or $I_{\infty} = \bigcup_{i \in \mathbb{N}} I_n$;
- (2) every infinite decreasing sequence $J_0 \subset J_1 \subset \cdots$ of ideals in R contains some J_n that is of PA degree.

Theorem

- Conidis (2010): over RCA₀, "every Artinian ring is Noetherian" proves WKL₀.
- Conidis (2013): WKL₀ proves "every Artinian ring is Noetherian".

Radicals of rings

Huishan Wu Beijing Language and Culture University

Let R be a commutative ring.

- The nilradical of R: $Nil(R) = \{x \in R : \exists n[x^n = 0_R]\}.$
- Classically, *Nil*(*R*) = the intersection of all prime ideals of *R*, also known as the prime radical of *R*

Theorem

- Downey, Lempp, Mileti (2007): There is a computable commutative ring R such that Nil(R) = {x ∈ R : ∃n[xⁿ = 0_R]} is Σ₁⁰-complete.
- Conidis (2009): There is a computable noncommutative ring R such that the prime radical of it is Π¹₁-complete.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Jacobson radicals of commutative rings

Let R be a commutative ring.

- The Jacobson radical of *R*:
 - $Jac(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_R yx) = 1_R]\}.$
- Classically, Jac(R) = the intersection of all maximal ideals of R.

Theorem(Downey, Lempp, Mileti, 2007)

There exists a computable ring R such that $Jac(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_R - yx) = 1_R]\}$ is Π_2^0 -complete.

A natural question:

• What is the complexity of Jacobson radicals of *noncommutative* rings?

For a ring R not necessarily commutative, we propose the following notions.

- The first order left Jacobson radical of R: $Jac_{I}^{0}(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_{R} - yx) = 1_{R}]\}.$
- The first order right Jacobson radical of R: $Jac_r^0(R) = \{x \in R : \forall y \in R \exists z \in R[(1_R - xy)z = 1_R]\}.$
- The second order left Jacobson radical of R: $Jac_l^1(R) = \bigcap \{\mathfrak{M} : \mathfrak{M} \text{ is a maximal left ideal of } R\}.$
- The second order right Jacobson radical of R: $Jac_r^1(R) = \bigcap \{\mathfrak{M} : \mathfrak{M} \text{ is a maximal right ideal of } R\}.$

Proposition(Wu, 2021)

Over RCA_0 , the following nine sets are equal for a ring R.

 $A_1 := \{ x \in R : \forall y_1, y_2 \in R \exists z \in R [z(1_R - y_1 x y_2) = (1_R - y_1 x y_2) z = 1_R] \}.$ $A_2 := \{x \in R : \forall y_1, y_2 \in R \exists z \in R[z(1_R - y_1 x y_2) = 1_R]\}$ $A_3 := \{x \in R : \forall y_1, y_2 \in R \exists z \in R[(1_R - y_1 x y_2) z = 1_R]\}$ $A_4 := \{ x \in R : \forall y \in R \exists z \in R [z(1_R - yx) = (1_R - yx)z = 1_R] \}$ $A_5 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - yx) = 1_R]\} = Jac_i^0(R)$ $A_6 := \{x \in R : \forall y \in R \exists z \in R [(1_R - yx)z = 1_R]\}$ $A_7 := \{x \in R : \forall y \in R \exists z \in R [z(1_R - xy) = (1_R - xy)z = 1_R]\}$ $A_8 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - x_V) = 1_R]\}$ $A_9 := \{x \in R : \forall y \in R \exists z \in R[(1_R - xy)z = 1_R]\} = Jac_r^0(R)$

<ロ> (四) (四) (三) (三) (三) (三)

Corollary

Over RCA₀, $Jac_l^0(R) = Jac_r^0(R)$.

In the following, $Jac^{0}(R) = Jac_{I}^{0}(R) = Jac_{r}^{0}(R)$ means the first order radical of R.

Theorem(Sato, 2016)

The following are equivalent over RCA₀.

(1) ACA₀.

- (2) For any ring R, $Jac^{0}(R) = Jac_{l}^{1}(R)$.
- (3) For any ring R, $Jac^{0}(R) = Jac_{r}^{1}(R)$.

Corollary

For any ring R, ACA₀ can prove $Jac_l^1(R) = Jac_r^1(R)$.

Motivating question

Can RCA_0 prove $\operatorname{Jac}_l^1(R) = \operatorname{Jac}_r^1(R)$ for a noncommutative ring R?

• For general rings, the question is unknown currently!

$Definition(RCA_0)$

- A ring R is local if the set U(R) of invertible elements exists and R U(R) is closed under addition.
- A ring R is left local if the set $U_l(R)$ of left invertible elements exists and $R U_l(R)$ is closed under addition.
- A ring R is right local if the set $U_r(R)$ of right invertible elements exists and $R U_r(R)$ is closed under addition.

イロン イヨン イヨン イヨン

Lemma

Over RCA_0 , the following are equivalent for a ring R.

(1) R is left local.

(2)
$$Jac_l^1(R)$$
 exists and $Jac_l^1(R) = R - U_l(R)$.

Similar for right local rings.

Theorem(Wu, 2021)

Over RCA₀, for a left local ring R, $Jac_l^1(R) = Jac_r^1(R)$.

Corollary

The following are equivalent over RCA₀.

- (1) R is a left local ring.
- (2) R is a right local ring.
- (3) R is a local ring.

$Proposition(ACA_0)$

For a ring R, the first order Jacobson radical $Jac^{0}(R)$ is equal to each of the following sets.

- $B_1 :=$ the intersection of all maximal left ideals of $R = Jac_l^1(R)$.
- B₂ := the intersection of the annihilators of all simple left *R*-modules.
- $B_3 :=$ the largest superfluous left ideal of R.
- $B_4 :=$ the sum of all superfluous left ideals of R.
- $B_5 :=$ the intersection of all maximal right ideals of $R = Jac_r^1(R)$.
- B₆ := the intersection of the annihilators of all simple right *R*-modules.
- $B_7 :=$ the largest superfluous right ideal of R.
- $B_8 :=$ the sum of all superfluous right ideals of R.

Radicals of modules

Huishan Wu Beijing Language and Culture University

(日)

Definition

Let *R* be a commutative ring with identity 1_R , a module *M* over *R* is an abelian group together with a scalar operation \cdot from $R \times M$ to *M* such that for all $m, m_1, m_2 \in M$ and $r, r_1, r_2 \in R$, the following axioms hold:

(r₁ + r₂) ⋅ m = r₁ ⋅ m + r₂ ⋅ m;
(r₁r₂) ⋅ m = r₁ ⋅ (r₂ ⋅ m);
1_R ⋅ m = m;

•
$$r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$$
.

We often write $r \cdot m$ as rm for convenience.

Examples:

- $\bullet\,$ Modules over the integer ring $\mathbb Z$ are abelian groups.
- Modules over fields are vector spaces.

A (1) > A (2) > A (2) >

In this section, let R be a commutative ring.

Definition

For an *R*-module *M*, the radical of *M* rad(M) is the intersection of all maximal submodules of *M*.

• Classically, $rad(M) = \bigcap \{\mathfrak{M}M : \mathfrak{M} \text{ is a maximal ideal of } R\}.$

Question: What is the complexity of radicals of modules over commutative rings?

• For \mathbb{Z} -modules M, $rad(M) = \bigcap_{i \in \mathbb{N}} p_i M$ is Π_2^0 , where p_i is the *i*-th prime number, and $p_i M = \{p_i x : x \in M\}$.

Theorem(Wu, 2020)

The following are equivalent over RCA₀.

(1) ACA₀.

(2) For any \mathbb{Z} -module M, rad(M) exists.

Theorem(Wu, 2021)

There is a computable \mathbb{Z} -module M such that rad(M) is Π_2^0 -complete.

Theorem(Conidis, 2021)

There is a computable module M over a computable ring R such that rad(M) is Π_1^1 -complete.

Corollary

The following are equivalent over RCA₀.

(1)
$$\Pi_1^1 - CA_0$$
.

(2) For any module M over a commutative ring R, rad(M) exists.

A (1) > A (2) > A (2) >

Thank you!

Huishan Wu Beijing Language and Culture University

<ロ> <同> <同> < 目> < 目> < 目> = 目