The complexity of radicals in rings and modules

Huishan Wu

Chinese Annual Conference on Mathematical Logic 2021 Nankai University

July 9-11, 2021

Huishan Wu [Beijing Language and Culture University](#page-27-0)

 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

 $2Q$

- Introduction
- Ideals in rings
- Radicals in rings
- Radicals in modules

(ロ) (個) (星) (星)

E

Introduction

Huishan Wu [Beijing Language and Culture University](#page-0-0)

 $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

- Van der Waerden (1930): study splitting algorithm of "explicitly given" fields.
- Church (1936), Kleene(1936), Turing(1937): provide formal definition of algorithm (i.e., finite procedure).
- Fröhlich and Shepherdson (1956): provide formal definition of explicit fields,
	- construct an explicit field with no splitting algorithm.
- Rabin (1960): study subgroups of computable groups, algebraic closures of computable fields,
	- every computable field has a computable algebraic closure.

 $4\Box$ \rightarrow \overline{AB} \rightarrow \rightarrow \overline{B} \rightarrow \rightarrow \overline{B} \rightarrow

- Computable functions (or sets): Turing computable, intuitive computable.
- Partial computable functions: $\varphi_0, \varphi_1, \cdots, \varphi_e, \cdots$.
- Computably enumerable sets ($=\Sigma_1^0$ sets): $W_0, W_1, \cdots, W_e, \cdots$.
	- $\emptyset' = \{e : \varphi_e(e) \downarrow\}$ (i.e., the Halting set) is Σ^0_1 -complete.
	- $\mathsf{Fin}=\{e: |W_e|<\infty\}$ is Σ^0_2 -complete.
	- Inf= { e : $|W_e| = \infty$ } is Π_2^0 -complete.
- Computably enumerable trees: $T_0, T_1, \cdots, T_n, \cdots$
- $\mathsf{WF}{=}\Set{e:\mathcal{T}_{e} \text{ is well-founded computable tree}}$ is $\Pi^1_1\text{-complete.}$

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

- (1) \leq τ : Turing reducibility on subsets of N.
- $(2) \equiv \tau$: Turing equivalence relation.
- (3) Turing degrees (or degrees): equivalence classes of $\equiv \tau$.
	- 0: the degree of computable sets;
	- $0'$: the degree of Halting problem.
- (4) c.e. degrees.
- (5) PA degrees.
	- \bullet A set is PA if it can compute an infinite path of any infinite computable binary tree.

 4 and 3 and 4 . The 4 in \pm and \pm

- $RCA₀$: the base system that captures effective proofs.
	- $RCA_0 \vdash$ "every field has an algebraic closure".
- WKL_0 : RCA₀+ "for any X, there is a set Y that is of PA degree relative to X".
- ACA_0 : RCA_0+ "for any X , the Halting set X' relative to X exists".

Ideals in rings

Huishan Wu [Beijing Language and Culture University](#page-0-0)

 $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

Computable ring

A computable ring is a computable set $R \subseteq \mathbb{N}$ together with computable binary operations $+_R$ and \cdot_R on R and elements 0_R , 1_R in R such that $(R, +_R, \cdot_R, 0_R, 1_R)$ satisfies axioms of a ring.

Examples:

$$
\bullet \ \mathbb{Z}[x_1,x_2,\cdots,x_n],\mathbb{Q}[x_1,x_2,\cdots].
$$

The ideal membership problem

Given a computable ring R , how about the complexity of its:

maximal ideals, prime ideals, finitely generated ideals, or even general ideals· · ·?

Friedman, Simpson, Smith (1983): Countable algebra and set existence axioms, Ann. Pure Appl. Logic.

Theorem(FSS, 1983)

Over $RCA₀$, the following are equivalent.

 (1) WKL₀.

(2) Any commutative ring contains a prime ideal.

Theorem(FSS, 1983)

Over $RCA₀$, the following are equivalent.

 (1) ACA₀.

(2) Any commutative ring contains a maximal ideal.

 $A \cap B$ $A \cap A \subseteq B$ $A \subseteq B$

Downey, Lempp, Mileti (2007): Ideals in computable rings, J. Algebra.

Theorem(DLM, 2007)

Over $RCA₀$, the following are equivalent.

 (1) WKL₀.

(2) Any commutative ring that is not a field has a nontrivial ideal.

Theorem (DLM, 2007)

The following are equivalent over $RCA₀$.

- (1) ACA₀.
- (2) Any commutative ring that is not a field has a nontrivial finitely generated ideal.

≮ロ ▶ (伊) (モ) (モ)

 Ω

- A commutative ring containing no infinite ascending chain of ideals is called Noetherian.
- A commutative ring containing no infinite descending chain of ideals is called Artinian.

Theorem(Conidis, 2010)

There is a computable ring R containing an infinite uniformly computable increasing sequence $I_0 \subset I_1 \subset \cdots$ of ideals such that

- (1) every ideal $I \subseteq R$ that is not PA is computable, and it is equal to I_n for some $n \in \mathbb{N}$ or $I_\infty = \bigcup\limits_{i \in \mathbb{N}} I_n$;
- (2) every infinite decreasing sequence $J_0 \subset J_1 \subset \cdots$ of ideals in R contains some J_n that is of PA degree.

 4 and 3 and 4 . The 4 in \pm and \pm

Theorem

- \bullet Conidis (2010): over RCA₀, "every Artinian ring is Noetherian" proves WKL_0 .
- \bullet Conidis (2013): WKL₀ proves "every Artinian ring is Noetherian".

 \leftarrow \Box

K 白 × モ × × モ × × ロ ×

 $2QQ$

Radicals of rings

Huishan Wu [Beijing Language and Culture University](#page-0-0)

 $\mathcal{A} \left(\Box \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow \mathcal{A} \left(\overline{\mathcal{B}} \right) \rightarrow \cdots \overline{\mathcal{B}}$

Let R be a commutative ring.

- The nilradical of R: $Nil(R) = \{x \in R : \exists n[x^n = 0_R]\}.$
- Classically, $Nil(R)$ =the intersection of all prime ideals of R, also known as the prime radical of R

Theorem

- **•** Downey, Lempp, Mileti (2007): There is a computable commutative ring R such that $Nil(R) = \{x \in R : \exists n[x^n = 0_R]\}$ is Σ_1^0 -complete.
- Conidis (2009): There is a computable **noncommutative** ring R such that the prime radical of it is Π^1_1 -complete.

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is

Jacobson radicals of commutative rings

Let R be a commutative ring.

- \bullet The Jacobson radical of R^1
	- $Jac(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_R yx)] = 1_R\}.$
- Classically, $Jac(R)$ = the intersection of all maximal ideals of R.

Theorem(Downey, Lempp, Mileti, 2007)

There exists a computable ring *such that* $Jac(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_R - yx) = 1_R]\}$ is Π_2^0 -complete.

A natural question:

• What is the complexity of Jacobson radicals of *noncommutative* rings?

 $AB = 4B + 4B +$

 Ω

For a ring R not necessarily commutative, we propose the following notions.

- \bullet The first order left Jacobson radical of R: $Jac_{l}^{0}(R) = \{x \in R : \forall y \in R \exists z \in R[z(1_{R} - yx) = 1_{R}]\}.$
- \bullet The first order right Jacobson radical of R: $Jac_r^0(R) = \{x \in R : \forall y \in R \exists z \in R[(1_R - xy)z = 1_R]\}.$
- \bullet The second order left Jacobson radical of R: $Jac_{1}^{1}(R) = \bigcap \{\mathfrak{M} : \mathfrak{M} \text{ is a maximal left ideal of } R\}.$
- \bullet The second order right Jacobson radical of R: $Jac_r^1(R) = \bigcap \{\mathfrak{M} : \mathfrak{M}$ is a maximal right ideal of $R\}.$

 $AB = 4B + 4B +$

Proposition(Wu, 2021)

Over $RCA₀$, the following nine sets are equal for a ring R .

 $A_1 = \{x \in R : \forall y_1, y_2 \in R \exists z \in R[z(1_R - y_1xy_2)] = (1_R - y_1xy_2)z = 1_R\}.$ $A_2 := \{x \in R : \forall y_1, y_2 \in R \exists z \in R[z(1_R - y_1xy_2)] = 1_R\}$ $A_3 := \{x \in R : \forall y_1, y_2 \in R \exists z \in R[(1_R - y_1xy_2)z = 1_R]\}$ $A_4 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - yx)] = (1_R - yx)z = 1_R]\}$ $A_5 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - yx) = 1_R]\} = Jac_l^0(R)$ $A_6 := \{x \in R : \forall y \in R \exists z \in R[(1_R - yx)z = 1_R]\}$ $A_7 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - xy) = (1_R - xy)z = 1_R]\}$ $A_8 := \{x \in R : \forall y \in R \exists z \in R[z(1_R - xy) = 1_R]\}$ $A_9 := \{ x \in R : \forall y \in R \exists z \in R[(1_R - xy)z = 1_R] \} = Jac_r^0(R)$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

 \equiv

 $2Q$

Corollary

Over RCA₀, $Jac_l^0(R) = Jac_r^0(R)$.

In the following, $Jac^0(R) = Jac^0_I(R) = Jac^0_I(R)$ means the first order radical of R.

Theorem(Sato, 2016)

The following are equivalent over $RCA₀$.

 (1) ACA₀.

- (2) For any ring R, $Jac^0(R) = Jac_l^1(R)$.
- (3) For any ring R, $Jac^0(R) = Jac_r^1(R)$.

Corollary

For any ring R, ACA₀ can prove
$$
Jac_l^1(R) = Jac_r^1(R)
$$
.

イロメ イ押メ イモメ イモメ

 $2QQ$

Motivating question

Can RCA₀ prove $Jac_l^1(R) = Jac_r^1(R)$ for a noncommutative ring R?

• For general rings, the question is unknown currently!

Definition($RCA₀$)

- A ring R is local if the set $U(R)$ of invertible elements exists and $R - U(R)$ is closed under addition.
- A ring R is left local if the set $U_1(R)$ of left invertible elements exists and $R - U_I(R)$ is closed under addition.
- A ring R is right local if the set $U_r(R)$ of right invertible elements exists and $R - U_r(R)$ is closed under addition.

≮ロ ▶ (伊) (モ) (モ)

Lemma

Over $RCA₀$, the following are equivalent for a ring R.

 (1) R is left local.

(2)
$$
Jac_l^1(R)
$$
 exists and $Jac_l^1(R) = R - U_l(R)$.

Similar for right local rings.

Theorem(Wu, 2021)

Over RCA₀, for a left local ring R,
$$
Jac_l^1(R) = Jac_r^1(R)
$$
.

Corollary

The following are equivalent over $RCA₀$.

- (1) R is a left local ring.
- (2) R is a right local ring.
- (3) R is a local ring.

←ロ ▶ → 何 ▶ → 君 ▶ → 君 ▶

 $2Q$

Proposition($ACA₀$)

For a ring R, the first order Jacobson radical $Jac^0(R)$ is equal to each of the following sets.

- $B_1 :=$ the intersection of all maximal left ideals of $R = Jac_l^1(R)$.
- \bullet $B_2 :=$ the intersection of the annihilators of all simple left R-modules.
- \bullet $B_3 :=$ the largest superfluous left ideal of R.
- \bullet $B_4 :=$ the sum of all superfluous left ideals of R.
- $B_5 :=$ the intersection of all maximal right ideals of $R = Jac_r^1(R)$.
- \bullet $B_6 :=$ the intersection of the annihilators of all simple right R-modules.
- \bullet $B_7 :=$ the largest superfluous right ideal of R.
- \bullet $B_8 :=$ the sum of all superfluous right ideals of R.

 \mathcal{A} and \mathcal{A} in the set of \mathbb{R} is a set of \mathbb{R} is

 Ω

Radicals of modules

Huishan Wu [Beijing Language and Culture University](#page-0-0)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ │ 君

 $2QQ$

Definition

Let R be a commutative ring with identity 1_R , a module M over R is an abelian group together with a scalar operation \cdot from $R \times M$ to M such that for all $m, m_1, m_2 \in M$ and $r, r_1, r_2 \in R$, the following axioms hold:

• $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m;$ $(r_1r_2) \cdot m = r_1 \cdot (r_2 \cdot m);$ \bullet 1_R · m = m; • $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$.

We often write $r \cdot m$ as rm for convenience.

Examples:

- \bullet Modules over the integer ring $\mathbb Z$ are abelian groups.
- Modules over fields are vector spaces.

In this section, let R be a commutative ring.

Definition

For an R-module M, the radical of M $rad(M)$ is the intersection of all maximal submodules of M.

Classically, $rad(M) = \bigcap \{ \mathfrak{M} \mathfrak{M} : \mathfrak{M}$ is a maximal ideal of $R \}$.

Question: What is the complexity of radicals of modules over commutative rings?

 $AB = 4B + 4B +$

 $2Q$

For $\mathbb Z$ -modules M , $rad(M) = \bigcap_{i \in \mathbb N} p_i M$ is Π^0_2 , where p_i is the *i*-th prime number, and $p_iM = \{p_i x : x \in M\}.$

Theorem(Wu, 2020)

The following are equivalent over $RCA₀$.

 (1) ACA₀.

(2) For any $\mathbb Z$ -module M, rad(M) exists.

Theorem(Wu, 2021)

There is a computable $\mathbb Z$ -module M such that $rad(M)$ is Π^0_2 -complete.

 4 and 3 and 4 . The 4 in \pm and \pm

 Ω

Theorem(Conidis, 2021)

There is a computable module M over a computable ring R such that rad(M) is Π_1^1 -complete.

Corollary

The following are equivalent over $RCA₀$.

(1) $\Pi_1^1 - CA_0$.

(2) For any module M over a commutative ring R, rad(M) exists.

in a think a think

Thank you!

Huishan Wu [Beijing Language and Culture University](#page-0-0)

 $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$