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Abstract
We first review the history of Hilbert’s Tenth Problem as well as
the speaker’s 11 unknowns theorem which states that there is no
algorithm to decide for any P(x1, . . . , x11) ∈ Z[x1, . . . , x11] whether
the equation P(x1, . . . , x11) = 0 has integer solutions.

We then talk about some applications of the 11 unknowns
theorem. In particular, the 11 unknowns theorem can be used to
deduce that there is no algorithm to decide for any
P(z1, . . . , z52) ∈ Z[z1, . . . , z52] whether the equation
P(z1, . . . , z52) = 0 has solutions over the Gaussian ring Z[i ].

Finally we introduce the speaker’s recent result with Geng-Rui
Zhang which states that Q \ Z is diophantine over Q with 32
unknowns. Combining this with the strong version of the 11
unknowns theorem, we obtain that there is no algorithm to decide
for any polynomial P(x1, . . . , x9, y1, . . . , y32) with integer
coefficients whether

∀x1 · · · ∀x9∃y1 · · · ∃y32[P(x1, . . . , x9, y1, . . . , y32) = 0],

where variables range over Q.
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Part I. History of Hilbert’s Tenth Problem (HTP)
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Hilbert’s Tenth Problem

In 1900, at the Paris conference of ICM, D. Hilbert presented 23
famous mathematical problems. Many of them are questions of
others, however the tenth one is due to Hilbert himself.

In modern language, Hilbert’s Tenth Problem (HTP) asks for
an effective algorithm to test whether an arbitrary polynomial
equation

P(z1, . . . , zn) = 0

(with integer coefficients) has solutions over the ring Z of the
integers.

However, at that time the exact meaning of algorithm was not
known.

Note that a system of finitely many Diophantine equations over
S ⊆ Z is equivalent to a single Diophantine equation over S . In
fact, if Pi (z1, . . . , zn) ∈ Z[z1, . . . , zn] for all i = 1, . . . , k , then

P1(z1, . . . , zn) = 0 ∧ . . . ∧ Pk(z1, . . . , zn) = 0

⇐⇒ P2
1 (z1, . . . , zn) + . . .+ P2

k (z1, . . . , zn) = 0. 4 / 49



Recursively enumerable sets and recursive sets

A subset A of N = {0, 1, . . .} is said to be an r.e. (recursively
enumerable) set (or a semi-decidable set) if the function

fA(x) =

{
1 if x ∈ A,

undefined if x ∈ N \ A.

is a partial recursive function (equivalently, Turing computable
function).

A set A ⊆ N is called decidable or recursive, if the characteristic
function

χA(x) =

{
1 if x ∈ A,

0 if x ∈ N \ A.

is Turing computable (or recursive).

A set A ⊆ N is recursive if and only if both A and N \ A are r.e.
sets. It is known that there are r.e. sets which are not recursive.
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Diophantine equations over N and Z
Throughout this talk, variables range over Z unless specified.

Let P(z1, . . . , zn) ∈ Z[z1, . . . , zn]. Then

∃z1 . . . ∃zn[P(z1, . . . , zn) = 0]

⇐⇒ ∃x1 > 0 . . . ∃xn > 0

[ ∏
ε1,...,εn∈{±1}

P(ε1x1, . . . , εnxn) = 0

]
.

On the other hand, by Lagrange’s four-square theorem (each
m ∈ N can be written as the sum of four squares), we have

∃x1 > 0 . . . ∃xn > 0[P(x1, . . . , xn) = 0]

⇐⇒ ∃u1∃v1∃y1∃z1 . . . ∃un∃vn∃yn∃zn

[P(u2
1 + v 2

1 + y 2
1 + z2

1 , . . . , u
2
n + v 2

n + y 2
n + z2

n ) = 0]

So HTP has the following equivalent form (HTP over N): Is there
an algorithm to decide for any polynomial P(x1, . . . , xn) with
integer coefficients whether the Diophantine equation
P(x1, . . . , xn) = 0 has solutions with x1, . . . , xn ∈ N?
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Diophantine relations and Diophantine sets

A relation R(a1, . . . , am) with a1, . . . , am ∈ N is said to be
Diophantine if there is a polynomial P(t1, . . . , tm, x1, . . . , xn) with
integer coefficients such that

R(a1, . . . , am) ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a1, . . . , am, x1, . . . , xn) = 0].

A set A ⊆ N is Diophantine if and only if the predicate a ∈ A is
Diophantine.

It is easy to see that any Diophantine set A is an r.e. set. In fact,
for a given element a ∈ A we may search for the natural number
solutions of the related Diophantine equation. If it has a solution,
then we will find one and let the computer stop and give the
output 1. If it has no solution, the computer will never stop.
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Exponential Diophantine relations

Exponential Diophantine equations have the form

E1(x1, . . . , xm) = E2(x1, . . . , xm),

where E1 and E2 are expressions constructed from variables and
particular natural numbers using addition, multiplication, and
exponentiation. Here is an example of exponential Diophantine
equation:

x2y + y 2 + y y z
= 5zxx+3z .

A relation R(a1, . . . , am) with a1, . . . , am ∈ N is said to be
exponential Diophantine if there is an exponential Diophantine
equation

E (t1, . . . , tm, x1, . . . , xn) = 0

such that

R(a1, . . . , am) ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[E (a1, . . . , am, x1, . . . , xn) = 0].

A set A ⊆ N is called exponential Diophantine if the predicate
a ∈ A is Diophantine.
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J. Robinson: z =
(

n
k

)
is exponential Diophantine

If 0 < k 6 n and u > 2n, then

(u + 1)n

uk
=

(
n

k

)
+ u

∑
k<m6n

(
n

m

)
um−k−1 +

∑
06i<k

(
n

i

)
ui

uk

by the binomial theorem, hence⌊
(u + 1)n

uk

⌋
≡
(

n

k

)
(mod u)

and thus
(n
k

)
is the least nonnegative residue of b(u + 1)n/ukc

modulo u.

For z > 0 and n > k > 0, the relation z =
(n
k

)
holds if and only if

there are u, v ,w , x , y ∈ N such that

u > v , v = 2n, z = rem(w , u),

x = (u + 1)n, y = uk , yw 6 x < (w + 1)y .
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The Davis-Putnam-Robinson theorem

Theorem (M. Davis, H. Putnam, J. Robinson, Annals of Math.
1961) Any r.e. set is exponential Diophantine. Thus there is no
algorithm to decide for any given exponential Diophantine equation
whether it has solutions over N.

Davis-Putnam-Robinson Lemma. Let b ∈ {2, 3, . . .},
P(y , x1, . . . , xm) ∈ Z[y , x1, . . . , xm], and
B(b,w) = P∗(b,w , . . . ,w) with P∗(y , x1, . . . , xm) obtained by
replacing each coefficient in P(y , x1, . . . , xm) by its absolute value.
Then

∀0 6 y < b∃x1 > 0 . . . ∃xm > 0[P(y , x1, . . . , xm) = 0]

⇐⇒ there exist q,w , z1, . . . , zm ∈ N such that

q ≡ −1 (mod b!(b + w + B(b,w))!), and(
q

b

)
divides

(
z1

w

)
, . . . ,

(
zm
w

)
and P(q, z1, . . . , zm).

Remark. This is not the original form of the DPR Lemma, but a
revised version by Y. Matiyasevich using the same ideas. 10 / 49



Matiyasevich’s Theorem

Recall that the Fibonacci sequence (Fn)n>0 defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .)

increases exponentially.
In 1970 Yu. Matiyasevich, a 23-year-old Russian, confirmed the JR
Hypothesis by showing that the relation y = F2x (with x , y ∈ N) is
Diophantine! It follows the exponential relation ab = c (with
a, b, c ∈ N, a > 1 and c > 0) is Diophantine, i.e. there exists a
polynomial P(a, b, c , x1, . . . , xn) with integer coefficients such that

ab = c ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(a, b, c, x1, . . . , xn) = 0].

This, together with the Davis-Putnam-Robinson work in 1961, led
Matiyasevich finally confirm Davis Daring Hypothesis.

Matiyasevich’s Theorem (or MDPR Theorem) (1970).
Recursively enumerable sets coincide with Diophantine sets (as
conjectured by M. Davis). Thus HTP has a negative solution!
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Part II. The 9 unknowns theorem
and the 11 unknowns theorem

12 / 49



Small ν with ∃ν over N undecidable

For a set S ⊆ Z we let ∃n over S denote the set of formulas

∃x1 ∈ S . . . ∃xn ∈ S [P(x1, . . . , xn) = 0]

with P(x1, . . . , xn) ∈ Z[x1, . . . , xn].

Any nonrecursive r.e. set A has a Diophantine representation:

a ∈ A ⇐⇒ ∃x1 > 0 . . . ∃xn > 0[P(x1, . . . , xn) = 0].

It is interesting to find the least ν ∈ Z+ = {1, 2, 3, . . .} such that
∃ν over N is undecidable.

ν < 200 (Matiyasevich, Summer of 1970)
ν 6 35 (J. Robinson, 1970)
ν 6 24 (Matiyasevich and Robinson, 1970)
ν 6 14 (Matiyasevich and Robinson, 1970)
ν 6 13 (Matiyasevich and Robinson, 1973 [Acta Arith. 27(1975)])
ν 6 9 (Matiyasevich’s 9 unknowns theorem, 1975; details in
Jones [J. Symbolic Logic, 1982])
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Matiyasevich-Robinson Relation-Combining Theorem
Matiyasevich and Robinson [Acta Arith. 27(1975)] introduced

Jk(x1, . . . , xk , x) :=
∏

ε1,...,εk∈{±1}

(
x + ε1

√
x1 + ε2

√
x2X + . . .+ εk

√
xkX k−1

)
with X = 1 +

∑k
i=1 x2

i . They showed that this polynomial has
integer coefficients and that A1, . . . ,Ak ∈ Z are all squares if and
only if Jk(A1, . . . ,Ak , x) = 0 for some x ∈ Z.

Matiyasevich-Robinson Relation-Combining Theorem. Let
A1, . . . ,Ak ,R, S and T be integers with S 6= 0. Then

A1 ∈ � ∧ . . . ∧ Ak ∈ � ∧ S | T ∧ R > 0

⇐⇒ ∃n > 0[Mk(A1, . . . ,Ak , S ,T ,R, n) = 0],

where � = {x2 : x ∈ Z}, and Mk(x1, . . . , xk ,w , x , y , z) is

(w 2(1− 2y))2k Jk

(
x1, . . . , xk , x

2 + X k +
x2 + w 2z

w 2(1− 2y)

)
with X = 1 +

∑k
j=1 x2

j .

(For the ⇒ direction we may even require n > 1 +
∑k

j=1 A2
j .) 14 / 49



The set of all primes

By Wilson’s theorem, an integer p > 1 is prime if and only if
(p − 1)! ≡ −1 (mod p). In view of this, the set of all primes is
Diophantine, and Matiyasevich obtained the following surprising
result with the use of a Putnam trick.

Matiyasevich (1975): There is a polynomial P(x0, . . . , x9) with
integer coefficients such that

{P(x0, x1, . . . , x9) : x0, . . . , x9 ∈ N} ∩ N

coincides the set of all primes.

Remark. This looks incredible to number theorists!

There is no non-constant polynomial P(x1, . . . , xn) ∈ Z[x1, . . . , xn]
such that P(x1, . . . , xn) with x1, . . . , xn ∈ N are all primes. For, if
P(x1, . . . , xn) is a prime p, then

P(x1 + py1, . . . , xn + pyn) ≡ 0 (mod p)

for all y1, . . . , yn ∈ N.
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∃ over Z is decidable

Matiyasevich and Robinson [Acta Arith. 27(1975)]: If
a0, a1, . . . , an and z are integers with a0z 6= 0 and∑n

i=0 aiz
n−i = 0, then

|z |n 6 |a0zn| 6
n∑

i=1

|ai | · |z |n−i 6
n∑

i=1

|ai | · |z |n−1

and hence

|z | 6
n∑

i=1

|ai |.

Thus ∃ over N and ∃ over Z are decidable (in polynomial time).

It is not known whether ∃2 over Z is decidable. But A. Baker
proved in 1968 that if P(x , y) ∈ Z[x , y ] is homogenous, irreducible
and of degree at least three then for any m ∈ Z there is an effective
algorithm to determine whether P(x , y) = m for some x , y ∈ Z.
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Relative results
For any m ∈ Z, by Lagrange’s four-square theorem

m > 0 ⇐⇒ ∃z1∃z2∃z3∃z4[m = z2
1 + z2

2 + z2
3 + z2

4 ].

Thus

∃n over N is undecidable⇒ ∃4n over Z is undecidable.

By the Gauss-Legendre theorem on sums of three squares,

N \ {x2 + y 2 + z2 : x , y , z ∈ Z} = {4k(8l + 7) : k , l ∈ N}.

If n ∈ N, then 4n + 1 = (2x)2 + (2y)2 + (2z + 1)2 for some
x , y , z ∈ Z, and hence n = x2 + y 2 + z2 + z . Thus, for any m ∈ Z,

m > 0 ⇐⇒ ∃x∃y∃z [m = x2 + y 2 + z2 + z ].

It follows that

∃n over N is undecidable⇒ ∃3n over Z is undecidable.

Thus ∃27 over Z is undecidable by the 9 unknowns theorem, as
pointed out by S.P. Tung in [Japan J. Math., 11(1985)].
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A new relation-combining theorem

Tung (1985) asked whether ∃ν over Z is undecidable for some
ν < 27.

New Relation-Combining Theorem (Z.-W. Sun [Z. Math. Logik
Grundlag. Math. 38(1992)]): Let A1, . . . ,Ak ,B,C1, . . . ,Cn,D,E
be integers with D 6= 0. Then

A1, . . . ,Ak ∈ � ∧ B 6= 0 ∧ C1, . . . ,Cn > 0 ∧ D | E

⇐⇒ ∃z1 . . . ∃zn+2[P(A1, . . . ,Ak ,B,C1, . . . ,Cn,D,E , z1, . . . , zn+2) = 0],

where P is a suitable polynomial with integer coefficients.

This implies that

∃n over N is undecidable⇒ ∃2n+2 over Z is undecidable.

So ∃20 over Z is undecidable by the 9 unknowns theorem.
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Two useful observations
To prove the New Relation-Combining Theorem we need two
useful observations.

An Observation of Shih Ping Tung (1985): For any m ∈ Z, we
have

m 6= 0 ⇐⇒ ∃x∃y [m = (2x + 1)(3y + 1)].

Note that if m ∈ Z \ {0} then we can write
m = ±3a(3y + 1) = (2x + 1)(3y + 1) with x , y ∈ Z.

If d ∈ Z+ is not a perfect square, then the Pell equation

y 2 − dx2 = 1

has infinitely many integer solutions; in particular dx2 + 1 ∈ � for
some x ∈ Z \ {0}.
In 1992, I made use of this fact from number theory.

An Observation. Let m ∈ Z. Then

m > 0 ⇐⇒ ∃x 6= 0((4m + 2)x2 + 1 ∈ �).
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The 11 Unknowns Theorem: ∃11 over Z is undecidable
In 1992, I announced that ∃11 over Z is undecidable.

To achieve this goal, unlike others I did not simply use the relative
result, instead I adapted the deep proof of the 9 unknowns
theorem and made suitable variants so that we can use integer
variables instead of natural number variables.

My starting point is the use of Lucas sequences with integer
indices instead of the usual natural number indices. I published
this initial step in Sci. China Ser. A 35(1992).

The whole proof of the undecidability of ∃11 over Z is very
sophisticated. It appeared in my PhD thesis in 1992. During
1992-2016, despite that many mathematicians wanted to see my
detailed proof, I did not write an English version of that, since I
was frequently busy with my new discoveries.

After 25 years had passed, I finally spent time to write an English
paper which contains the undecidability of ∃11 over Z as well as
my new discoveries related to HTP. The paper was posted to arXiv
in 2017, and published in Sci. China Math. [64(2021), 281-306]. 20 / 49



A lemma on Lucas sequences

For A,B ∈ Z the Lucas sequence un = un(A,B) (n ∈ N) and its
companion vn = vn(A,B) (n ∈ N) are defined as follows:

u0 = 0, u1 = 1, un+1 = Aun − Bun−1 (n = 1, 2, 3, . . .);

v0 = 2, v1 = A, vn+1 = Avn − Bvn−1 (n = 1, 2, 3, . . .).

Lemma 1 (See, e.g., Sun [Sci. China Ser. A 35(1992)]). Let
A ∈ {2, 3, . . .}. Then

(A2 − 4)x2 + 4 = y 2 ∧ x > 0 ∧ y > 0

if and only if

x = un(A, 1) and y = vn(A, 1) for some n ∈ N.
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Two other lemmas

Lemma 2 (Sun [Sci. China Ser. A 35(1992)]). Let A,B ∈ Z with
|A| > 2 and B > 0, and let C = uB(A, 1). Then |C | > B, and
DFI ∈ � for some x 6= 0 and y , where

D = (A2 − 4)C 2 + 4, E = C 2Dx , F = 4(A2 − 4)E 2 + 1,

G = 1 + CDF − 2(A + 2)(A− 2)2E 2, H = C + BF + (2y − 1)CF ,

I = (G 2 − 1)H2 + 1.

If A > 2, for any Z ∈ Z+ we may require further that x , y > Z .

Lemma 3. Let A,B,U,V ∈ Z with B > 0. Then

(UV )B−1uB(A, 1) ≡
B−1∑
r=0

U2rV 2(B−1−r) (mod U2 − AUV + V 2).

Consequently,

(V 2 − 1)V BuB(A, 1) ≡ V (V 2B − 1) (mod V 2 − AV + 1).

Remark. This can be proved by induction on B, and a weaker
version is due to J. Robinson.
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The first auxiliary theorem

Theorem 1 (Sun [Sci. China Math. 64(2021)]). Let p be a prime,
and let b ∈ p ↑= {pn : n ∈ N} and g ∈ Z+. Let P,Q,X and Y
be integers with P > Q > 0 and X ,Y > b. Suppose that
Y |

(PX
QX

)
. Then there are integers h, k , l ,w , x , y > b for which

DFI ∈ �, (U2PV 2−4)K 2+4 ∈ �, pA−p2−1 | (p2−1)WC−p(W 2−1),

bw = pB and 16g 2(C − KL)2 < K 2,

where

L := lY , U := PLX , V := 4gwY , W := bw ,

K := QX + 1 + k(UPV − 2), A := UQ(V + 1), B := PX + 1,

C := B + (A− 2)h, D = (A2 − 4)C 2 + 4, E = C 2Dx ,

F = 4(A2 − 4)E 2 + 1, G = 1 + CDF − 2(A + 2)(A− 2)2E 2,

H = C + BF + (2y − 1)CF , I = (G 2 − 1)H2 + 1.
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On un(A, 1) with n ∈ Z
We extend the sequences un = un(A, 1) and vn = vn(A, 1) to
integer indices by letting

u0 = 0, u1 = 1, and un−1 + un+1 = Aun for all n ∈ Z,

and

v0 = 2, v1 = A, and vn−1 + vn+1 = Avn for all n ∈ Z.

It is easy to see that

u−n(A, 1) = −un(A, 1) = (−1)nun(−A, 1)

and v−n(A, 1) = vn(A, 1) = (−1)nvn(−A, 1) for all n ∈ Z.

Lemma 4. Let A,X ∈ Z. Then

(A2 − 4)X 2 + 4 ∈ � ⇐⇒ X = um(A, 1) for some m ∈ Z.
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Two more lemmas

Lemma 5 (Sun [Sci. China Ser. A 35(1992)]). Let A,B,C ∈ Z
with 1 < |B| < |A|/2− 1. Then

C = uB(A, 1) ⇐⇒ (A− 2 | C − B) ∧ ∃x 6= 0∃y(DFI ∈ �),

where

D = (A2 − 4)C 2 + 4, E = C 2Dx , F = 4(A2 − 4)E 2 + 1,

G = 1 + CDF − 2(A + 2)(A− 2)2E 2, H = C + BF + (2y − 1)CF ,

I = (G 2 − 1)H2 + 1.

Lemma 6 (Sun [Sci. China Ser. A 35(1992)]). Let B,V and W
be integers with B > 0 and |V | > 1. Then W = V B if there are
A,C ∈ Z for which |A| > max{V 4B ,W 4}, C = uB(A, 1) and

(V 2 − 1)WC ≡ V (W 2 − 1) (mod AV − V 2 − 1).
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The second auxiliary theorem

Theorem 2 (Sun [Sci. China Math. 64(2021)]. Let p be a prime,
and let b ∈ N and g ∈ Z+. Let P,Q,X and Y be integers with

P > Q > 0, X > 3b and Y > max{b, p4P}.
Suppose that there are integers h, k , l ,w , x , y with lx 6= 0 for which

DFI ∈ �, (U2PV 2−4)K 2+4 ∈ �, pA−p2−1 | (p2−1)WC−p(W 2−1),

and 4(C − KL)2 < K 2, where where

L := lY , U := PLX , V := 4gwY , W := bw ,

K := QX + 1 + k(UPV − 2), A := UQ(V + 1), B := PX + 1,

C := B + (A− 2)h, D = (A2 − 4)C 2 + 4, E = C 2Dx ,

F = 4(A2 − 4)E 2 + 1, G = 1 + CDF − 2(A + 2)(A− 2)2E 2,

H = C + BF + (2y − 1)CF , I = (G 2 − 1)H2 + 1.

Then

b ∈ p ↑ and Y |
(

PX

QX

)
.
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A lemma involving Pell’s equation

Lemma 7 (Sun [Sci. China Math. 64(2021)] Let m ∈ Z. Then

m > 0 ⇐⇒ ∃x 6= 0[(3m − 1)x2 + 1 ∈ �].

Proof. Clearly, (3× 0− 1)12 + 1 ∈ �.

If m < 0 and x ∈ Z \ {0}, then (3m − 1)x2 + 1 6 −4 + 1 < 0.

If m > 0, then 3m − 1 > 0 and 3m − 1 6∈ �, hence the Pell
equation y 2− (3m− 1)x2 = 1 has infinitely many integral solutions
and thus (3m − 1)x2 + 1 ∈ � for some nonzero integer x .

In view of the above, we have completed the proof.
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The third auxiliary theorem

Theorem 3 (Z.-W. Sun [Sci. China Math. 64(2021)]). Let A ⊆ N
be a Diophantine set, and let p be a prime. Then, for each a ∈ N,
we have

a ∈ A ⇒ ∀Z > 0∃f > Z∃g ∈ [b, C)

(
b ∈ �∧b ∈ p ↑ ∧Y |

(
pX

X

))
,

∃f 6= 0∃g ∈ [0, 2C)

(
b ∈ � ∧ b ∈ p ↑ ∧Y |

(
pX

X

))
⇒ a ∈ A,

where
b := 1 + (p2 − 1)(ap + 1)f ,

C = pα1pbα2 for some α1, α2 ∈ Z+ only depending on A, and X
and Y are suitable polynomials in Z[a, f , g ] such that if a ∈ N,
f ∈ Z \ {0}, b ∈ � and 0 6 g < 2C then

p + 1 | X , X > 3b and Y > max{b, p4p}.
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Our Main Theorem

Main Theorem (Sun [Sci. China Math. 64(2021)]). Let A ⊆ N
be any r.e. set. Then there is a polynomial PA(z0, z1, . . . , z9) with
integer coefficients such that for any a ∈ N we have

∃z1 . . . ∃z8∃z9 > 0[PA(a, z1, . . . , z9) = 0] =⇒ a ∈ A,

and

a ∈ A =⇒ ∀Z > 0∃z1 > Z . . . ∃z9 > Z [PA(a, z1, . . . , z9) = 0].

Remark. As a ∈ A if and only if

∃z1 > 0 . . . ∃z8 > 0∃z9 > 0

[ ∏
ε1,...,ε8∈{±1}

PA(a, ε1z1, . . . , ε8z8, z9) = 0

]
,

the Main Theorem implies Matiyasevich’s 9 unknowns theorem.
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The 11 Unknowns Theorem

As n > 0 if and only if n = x2 + y 2 + z2 + z for some x , y , z ∈ Z,
the Main Theorem implies the following result.

The 11 Unknowns Theorem (Sun [Sci. China Math. 64(2021)]).
For any r.e. set A ⊆ N, there is a polynomial
QA(z0, . . . , z11) ∈ Z[z0, . . . , z11] such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 · · · ∃z11[QA(a, z1, . . . , z11) = 0].

Consequently, there is no algorithm to decide for any
P(z1, . . . , z11) ∈ Z[z1, . . . , z11] whether the equation

P(z1, . . . , z11) = 0

has integer solutions.

Actually we even could require deg P < 8.1142× 1046. We view
the Main Theorem of the speaker as the strong form of the 11
unknowns theorem.
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Another Theorem

Theorem (Sun [Sci. China Math. 64(2021)]). Let A ⊆ N be any
r.e. set. There is a polynomial QA(z0, z1, . . . , z10) with integer
coefficients such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 . . . ∃z9∃z10 6= 0[QA(a, z1, . . . , z10) = 0].

Remark. We can prove this by modifying our proof of the 11
unknowns theorem slightly. This result also implies the 11
unknowns theorem since z 6= 0 ⇐⇒ ∃x∃y(z = (2x + 1)(3y + 1)).
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P(z2
1 , . . . , z

2
17) = 0

Theorem (Sun [Sci. China Math. 64(2021)]). Let A be any r.e.
subset of N. Then there is a polynomial P4(z0, z1, . . . , z17) with
integer coefficients such that for any a ∈ N we have

a ∈ A ⇐⇒ ∃z1 ∈ � . . . ∃z17 ∈ �[P4(a, z1, . . . , z17) = 0].

Remark. To obtain this result we need to modify the proof of the
11 unknowns theorem and make use of

{2δ(x2 − y 2) : δ ∈ {0, 1}, x , y ∈ Z} = Z.

Note that z = ( z+1
2 )2 − ( z−1

2 )2.

Corollary. There is no algorithm to decide for any
P(x1, . . . , x17) ∈ Z[x1, . . . , x17] whether the equation

P(z2
1 , . . . , z

2
17) = 0

has integer solutions.
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Part III. Applications of the 11 unknowns theorem
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HTP for rings of algebraic number fields

Let K be an algebraic number field and OK be the ring of
algebraic integers in K . It is widely believed that Hilbert’s Tenth
Problem (HTP) over the ring OK is also undecidable. There are
some partial results in this direction.

J. Denef [Proc. Amer. Math. Soc. 1975]: If K is a quadratic
number field, then Z is Diophantine over OK and hence HTP over
OK is undecidable.

H. N. Shapiro and A. Shlapentokh [Comm. Pure Appl. Math.
1989]: If K is an abelian number fields (i.e., the Galois group
Gal(K/Q) is abelian), then Z is Diophantine over OK and hence
HTP over OK is undecidable.

M. R. Murty and H. Pasten [J. Number Theory 2017]: Under
the Birch and Swinnerton-Dyer conjecture and the automorphy
conjecture for L-functions of elliptic curves, HTP over OK is
undecidable for any algebraic number field K .
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HTP over Z[i ]

Gaussian ring: Z[i ] = {a + bi : a, b ∈ Z}.

Lemma (J. Denef [Proc. AMS 48(1975)]). If x , y ∈ Z[i ] and
x2 − 4xy + y 2 = 1, then x , y ∈ Z.

Auxiliary Theorem (Matiyasevich and Sun, 2019). A number
z ∈ Z[i ] is a rational integer if and only if there are
v ,w , x , y ∈ Z[i ] with v 6= 0 such that

(4(2v(2(2z + 1)2 + 1)− y)2 − 3y 2 − 1)2

+ 2(w 2 − 1− 3y 2(2z + 1− xy)2)2 = 0.

Combining this result with the undecidability of
∃z1 · · · ∃z9∃z10 6= 0[P(z1, . . . , z10) = 0], we obtain the following
result.

Theorem (Matiyasevich and Sun, 2019). There is no algorithm to
decide whether an arbitrarily given polynomial equation
P(z1, . . . , z52) = 0 (with integer coefficients) over Z[i ] is solvable.
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Conjectures

Conjecture 1 (Sun [Sci. China Math. 64(2021)]). There is no
algorithm to decide for any P(x , y , z) ∈ Z[x , y , z ] whether the
equation

P(x2, y 2, z2) = 0

has integer solutions.

Remark. This implies that ∃3 over Z is undecidable as believed by
A. Baker, Yu. Matiyasevich and J. Robinson.

Conjecture 2 (Sun, arXiv:2103.08302). ∀2∃2 over Z is
undecidable. In other words, there is no algorithm to decide for any
P(x1, . . . , x4) ∈ Z[x1, . . . , x4] whether for any a, b ∈ Z the equation

P(a, b, x , y) = 0

has solutions with x , y ∈ Z.

Remark. In contrast, the speaker has proved that ∀10∃2 and ∀2∃4

over Z are undecidable.
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Application of the 11 unknowns theorem to dynamic
geometry

In 2002, J. Richter-Gebert and U. Kortenkamp applied the 11
unknowns theorem to obtain a undecidable result in dynamic
geometry.

Theorem. Let P be a GSP over the JMBW instruction set with at
least 11 WHEEL-operations and two BISECT-operations. Let A
and B be two admissible instances of P. It is undecidable whether
there is an admissible real path from A to B.

GSP–Geometric Straight Line Program with four basic points
(0, 0), (1, 0), (0, 1), (1, 1).

J–Join. Draw a line passing two distinct points.

M–Meet. Find the intersection point of two lines.

B–Bisect. Draw the angular bisector of two lines passing through
the origin O.

W–Wheel. Find an angle θ for a point P = (x , y) 6= (0, 0) with
x + yi = re2πiθ for some r > 0.

37 / 49



Application of the 11 unknowns theorem to the fixed point
problem of the SRL language

The programming language SRL has distinctive features:

(i) Every program that mentions n registers defines a bijection
from Zn to Zn.

(ii) The generation of the SRL-program that computes the inverse
of the bijection can be automatic.

In 2020 A.B. Matos, L. Paolini and L. Roversi [Theoret. Comput.
Sci. 813(2020)] applied the speaker’s 11 unknowns theorem to
obtain the following result.

Theorem. For the programming language SRL, there is no
algorithm to determine for any SRL program P whether there is a
tuple of inputs with length 12 which remains unaltered after the
execution of the program P.
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HTP over the rational field Q
It is not known that whether HTP over Q is decidable or not. If Z
is Diophantine over Q, then HTP over Q is undecidable since HTP
over Z isundecidable.

Up to now, nobody can show that Z is Diophantine over Q.

J. Robinson [J. Symbolic Logic 14 (1949)]: Z is first-order
definable over Q and so the theory (Q,+, ·) is undecidable.
Moreover, there is a polynomial

F ∈ Z[t, x1, x2, y1, . . . , y7, z1, . . . , z6]

such that t ∈ Q is an integer if and only if

∀a∀b∃y1 . . . ∃y7∀z1 . . . ∀z6[F (t, a, b, y1, . . . , y7, z1, . . . , z6) = 0]

holds over Q. The polynomial F involves

Ma,b = {r ∈ Q : ∃x∃y∃z [x2 + ay 2 − bz2 = 2 + abr 2]}.
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Comments on J. Robinson’s work
Hasse-Minkowski Theorem. An integral quadratic form
f (x1, . . . , xn) represents 0 in Q (with x1, . . . , xn not all zero) if and
only if f represents 0 in Q∞ = R and in Qp for each prime p.

This plays an important role in J. Robinson’s way defining Z in Q.

Comments from R. M. Robinson (J. Robinson’s husband):

“She looked at a lot of things that were not helpful.

It was several months before she found the Hasse

paper. Then she had to find suitable forms to

eliminate the various primes from the denominators.

Note that it is only the fact that ternary forms

represent most numbers with a few exceptions that

makes the definition possible. . . . . . . The proof would

have been a lot easier for someone who already knew

about Hasse’s work. But I guess that those who knew

it had never heard of Tarski’s problem. It must often
happen that the tools for solving a problem are known, but
not to the people working on the problem.”
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Further improvements of Robinson’s result

B. Poonen [Amer. J. Math. 131 (2009)]: There is a polynomial
G ∈ Z[t, x1, x2, y1, . . . , y7] such that a rational number t is an
integer if and only if

∀x1∀x2∃y1 . . . ∃y7[G (t, x1, x2, y1, . . . , y7) = 0]

holds over Q.

J. Koenigsmann [Annals of Math. 183 (2016)]: There is a
polynomial H ∈ Z[t, x1, x2, . . . , xn] such that a rational number t is
not an integer, if and only if

∃x1∃x2 . . . ∃xn[H(t, x1, x2, . . . , xn) = 0]

Thus Q \ Z is Diophantine over Q. (n can be taken as 418.)

N. Daans (2018-2021): For Koenigsmann’s theorem, we may take
n = 146, 50, 38. To get n = 38, Daans needs his joint work with
P. Dittmann and A. Fehm [arXiv:2102.06941] via model theory.
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Daans’ simplification of Koenigsmann’s work
Let P be the set of all primes. For p ∈ P let Z(p) = Q ∩ Zp, where
Zp is the ring of p-adic integers. For t ∈ Q, clearly

t ∈ Q \ Z ⇐⇒ t 6= 0 ∧ t−1 ∈
⋃
p∈P

pZ(p).

Let a, b ∈ Q∗. B. Poonen [Amer. J. Math. 2009] defined

Sa,b = {2x1 ∈ Q : ∃x2∃x3∃x4[x2
1 − ax2

2 − bx2
3 + abx2

4 = 1]}
and Ta,b = Sa,b + Sa,b = {x + y : x , y ∈ Sa,b}.
For S ,T ⊆ Q we define T× = {t ∈ T \ {0} : t−1 ∈ T} and
ST = {st : s ∈ S & t ∈ T}. Daans [arXiv:1812.04372] proved
that ⋃

p∈P
pZ(p) = 2Z(2) ∪

⋃
(a,b)∈Φ

(Ja
a,b ∩ J2b

a,b),

where Φ = {(1 + 4u2, 2v) : u, v ∈ Z×(2)}, and

Jc
a,b = Ta,b {cy 2 : y ∈ Q & 1− cy 2 ∈ �T×a,b}

with � = {r 2 : r ∈ Q}. Also, Z(2) = S3,3 + S2,5. 42 / 49



My joint work with Geng-Rui Zhang
Theorem (Geng-Rui Zhang and Z.-W. Sun, arXiv:2104.02520).
Q \ Z has a diophantine representation over Q with 32 unknowns,
i.e., there is a polynomial P(t, x1, . . . , x32) ∈ Z[t, x1, . . . , x32] such
that for any t ∈ Q we have

t 6∈ Z ⇐⇒ ∃x1 · · · ∃x32[P(t, x1, . . . , x32) = 0].

Furthermore, the polynomial P can be constructed explicitly with
deg P < 2.1× 1011.

To obtain this theorem, we start from Daans’ work in 2018, and
mainly use a new relation-combining theorem on diophantine
representations over Q (which is an analogue of Matiyasevich and
Robinson’s Relation-Combining Theorem) as an auxiliary tool.

Lemma (Besicovich, 1940). Let K be a field with ch(K ) 6= 2. For
any a1, . . . , an ∈ K with

∏
s∈I as 6∈ {x2 : x ∈ K} for all

∅ 6= I ⊆ {1, . . . , n}, we have [K (b1, . . . , bn) : K ] = 2n, where
b1, . . . , bn are elements of K̄ with b2

s = as for all s = 1, . . . , n.
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Relation-Combining Theorem over Q
Relation-Combining Theorem over Q (G.-R. Zhang and Z.-W.
Sun, arXiv:2104.02520). Let A1, . . . ,Ak ∈ Q∗ = Q \ {0}, and
define

Jk(A1, . . . ,Ak , x) =
k∏

s=1

A(k−1)2k+1

s ×
∏

ε1,...,εk∈{±1}

(
x +

k∑
s=1

εs
√

As W s−1

)
,

where

W =

(
k +

k∑
s=1

A2
s

)(
1 +

k∑
s=1

A−2
s

)
.

Then Jk(x1, . . . , xk , x) is a polynomial with integer coefficients.
Moreover,

A1, . . . ,Ak ∈ � ⇐⇒ ∃x [Jk(A1, . . . ,Ak , x) = 0],

where � = {r 2 : r ∈ Q}.

We use induction on k and make use of Galois theory.
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Two lemmas

Any nonnegative rational number can be written as a/b = (ab)/b2

with a, b ∈ N and b > 0. So Lagrange’s four-square theorem yields
the following lemma.

Lemma. Let r ∈ Q. Then

r > 0 ⇐⇒ ∃w∃x∃y∃z [r = w 2 + x2 + y 2 + z2].

We also make use of the following useful lemma.

Robinson’s Lemma (cf. D. Flath and S. Wagon [Amer. Math.
Monthly 98(1991)]). Let r be any rational number. Then

r ∈ Z2 ⇐⇒ ∃x∃y∃z [7r 2 + 2 = x2 + y 2 + z2].

This can be proved directly by using the Gauss-Legendre theorem

N \ {x2 + y 2 + z2 : x , y , z ∈ Z} = {4k(8m + 7) : k ,m ∈ N}.
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∀9∃32 over Q is undecidable

Combining the speaker’s strong form of the 11 unknowns theorem
with Zhang and Sun’s result that Q \ Z is diophantine over Q with
32 unknowns, we obtain the following result.

Theorem (G.-R. Zhang and Z.-W. Sun, arXiv:2104.02520). ∀9∃32

over Q is undecidable, i.e., there is no algorithm to determine for
any P(x1, . . . , x41) ∈ Z[x1, . . . , x41] whether

∀x1 · · · ∀x9∃y1 · · · ∃y32[P(x1, . . . , x9, y1, . . . , y32) = 0],

where variables range over Q.

Proof. For any x ∈ Q, we clearly have

x < 0 ⇐⇒ x 6= 0 ∧ −x > 0

⇐⇒ ∃y1(xy1 = 1) ∧ ∃y1∃y3∃y4∃y5(−x = y 2
2 + y 2

3 + y 2
4 + y 2

5 )

⇐⇒ ∃y1 · · · ∃y5[(x9y1 − 1)2 + (x9 + y 2
2 + y 2

3 + y 2
4 + y 2

5 )2 = 0].
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Proof of the undecidability of ∀9∃32 over Q
As proved by Zhang and Sun, there is a polynomial
f (y1, . . . , y32) ∈ Z[y1, . . . , y32] such that for any x ∈ Q we have

x 6∈ Z ⇐⇒ ∃y1 · · · ∃y32[f (y , y1, . . . , y32) = 0].

Let P(x1, . . . , x9) ∈ Z[x1, . . . , x9]. Then

¬∃x1 ∈ Z · · · ∃x8 ∈ Z∃x9 ∈ N[P(x1, . . . , x9) = 0]

⇐⇒ ∀x1 · · · ∀x9[¬(x1, . . . , x9 ∈ Z ∧ x9 ≥ 0) ∨ P(x1, . . . , x9) 6= 0]

⇐⇒ ∀x1 · · · ∀x9[∨9
t=1(xt 6∈ Z) ∨ x9 < 0 ∨ P(x1, . . . , x9) 6= 0]

⇐⇒ ∀x1 · · · ∀x9[∨9
t=1∃y1 · · · ∃y32(f (xt , y1, . . . , y32) = 0)

∨ −x9 > 0 ∨ ∃y1(y1P(x1, . . . , x9)− 1 = 0]

⇐⇒ ∀x1 · · · ∀x9∃y1 · · · ∃y32[P∗(x1, . . . , x9, y1, . . . , y32) = 0],

where P∗(x1, . . . , x9, y1, . . . , y32) is the polynomial

(y1P(x1, . . . , x9)− 1)
9∏

t=1

f (xt , y1, . . . , y32)

×
(
(x9y1 − 1)2 + (x9 + y 2

2 + y 2
3 + y 2

4 + y 2
5 )2
)
.
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