Coarse approximate subgroups in weak general position and Elekes-Szabó problems for nilpotent groups

Tingxiang Zou joint work with Martin Bays and Jan Dobrowolski

Motivation 1

The Elekes-Szabó problem 1.1

• Let $V \subseteq \mathbb{C}^n$ be an irreducible algebraic variety over \mathbb{C} . Let $N \in \mathbb{N}$ and $X_i \subseteq \mathbb{C}$ with $|X_i| \leq N$ for $1 \leq i \leq n$. Then

$$|V \cap \prod_{1 \le i \le n} X_i| \le O_V(N^{\dim(V)}).$$

• Say V admits no power-saving if the exponent dim(V) is optimal, i.e. there is no $\epsilon > 0$ such that $|V \cap \prod_{1 \le i \le n} X_i| \le O_{V,\epsilon}(N^{\dim(V)-\epsilon})$ for all N and $X_i \subseteq \mathbb{C}$ with $|X_i| \le N$.

• Simplest non-trivial case: n = 3 and $\dim(V) = 2$, what are those V which admit no power-saving? Example: The graph $\Gamma_+ \subseteq \mathbb{C}^3$ of addition in $(\mathbb{C}, +, 0)$ has no power-saving: $X_N := [-N/2, N/2] \cap \mathbb{Z}$, then $|\Gamma_+ \cap (X_N)^3| \ge N^2/2.$

• For irreducible varieties $V \subseteq \prod_{i \le n} W_i$ and $V' \subseteq \prod_{i \le n} W'_i$, we say V is in co-ordinatewise correspondence with V' if the generics $(a_1, \ldots, a_n) \in V$ and $(a'_1, \ldots, a'_n) \in V'$ are co-ordinatewise interalgebraic with each other.

Elekes-Szabó (2012): How to find groups? (and how to use them in Erdős geometry?) Let $V \subseteq \mathbb{C}^3$ be an irreducible surface (i.e. $\dim(V) = 2$) admitting no power-saving. Then V either projects to some curve, i.e. $\dim(\pi_{ij}(V)) = 1$ for some $i \neq j \in \{1, 2, 3\}$, or is in co-ordinatewise correspondence with the graph $\Gamma_+ := \{(g, h, g+h) : g, h \in G\} \subseteq G^3$ of multiplication for some one-dimensional complex algebraic group G.

Philosophy: "whenever we find a lot of unexpected coincidences, then somewhere in the background there lurks a large group of symmetries."

Non-standard set-up:

- Work in $\mathbb{K} := \mathbb{C}^{\mathcal{U}}$ for some non-principal ultrafilter \mathcal{U} and in a language \mathcal{L} expanding \mathcal{L}_{ring} .
- An internal set $X \subseteq \mathbb{K}^n$ is a set of the form $X = \prod_{s \to \mathcal{U}} X_s$ with $X_s \subseteq \mathbb{C}^n$.
- Let $\xi \in (\mathbb{R}^{\mathcal{U}} \setminus \mathbb{R})_{>0}$ be a nonstandard real number. Define the coarse dimension δ with respect to ξ on internal sets as $\delta(X) := \operatorname{st}(\log |X| / \log \xi) \in \mathbb{R}^{\geq 0} \cup \{\pm \infty\}.$
- We call a set X broad if it is internal and $0 < \delta(X) < \infty$, note in this case X must be pseudofinite.

Remark: An irreducible $V \subseteq \mathbb{C}^n$ admits no power saving is equivalent to existing broad sets $X_1, \ldots, X_n \subseteq$ $\mathbb{C}^{\mathcal{U}}$ such that $\boldsymbol{\delta}(X_i) = \boldsymbol{\delta}(X_j)$ for all i, j and $\boldsymbol{\delta}(V \cap \prod_{1 \leq i \leq n} X_i) = \dim(V) \boldsymbol{\delta}(X_i)$.

Definition: Let $V \subseteq \prod_{i \le n} W_i$ be irreducible variates with $\dim(W_i) = d$ for all $i \le n$ and $\dim(V) = kd$. We call V admits no powering-saving witnessed by $(X_i)_{i \leq n}$ for some broad sets $X_i \subseteq W_i$, if $\delta(X_i) =$ $\boldsymbol{\delta}(X_j)$ and $\boldsymbol{\delta}(V \cap \prod_{1 \le i \le n} X_i) = k \boldsymbol{\delta}(X_i).$

• Higher dimensional case:

Theorem (Elekes-Szabó 2012)

Let $V \subseteq W_1 \times W_2 \times W_3$ be irreducible varieties with $\dim(V) = 2\dim(W_i) = 2d$ and $\dim(\pi_{ij})(V) = 2d$ 2d for all $i \neq j \in \{1, 2, 3\}$. Suppose V admits no power-saving witnessed by broad sets $X_i \subseteq W_i(\mathbb{C}^{\mathcal{U}}), i \in \{1, 2, 3\}$ in coarse general position. Then V is in co-ordinatewise correspondence with the graph $\Gamma_G := \{(g, h, g + h) : g, h \in G\} \subseteq G^3$ of multiplication for some d-dimensional connected **commutative** complex algebraic group G.

• A broad subset $X \subseteq W$ for an irreducible variety W over $\mathbb{C}^{\mathcal{U}}$ is called in coarse general position (cgp) if $\delta(X \cap V) = 0$ for any proper subvariety $V \subseteq W$ over $\mathbb{C}^{\mathcal{U}}$.

Remarks:

- Without the cgp assumption, there is no guarantee to find a group.
- Bays-Breuillard 2018: Given a commutative complex algebraic group G, there exists broad cgp set $X \subseteq G(\mathbb{C}^{\mathcal{U}})$ which witnesses Γ_G admitting no power-saving (i.e. $\delta(\Gamma_G \cap X^3) = 2\delta(X)$) by setting X to be ultraproducts of generalised arithmetic progressions with increasing size of independent generics as generators.

? Why abelian groups ?

• Coarse general position is a strong assumption.

Observation (Breuillard-Wang 2016)

Let G be a connected algebraic group over $\mathbb{C}^{\mathcal{U}}$. Suppose the graph of multiplication Γ_G admits no power-saving witnessed by a broad set $X \subseteq G$ in coarse general position. Then G is abelian.

Question: Can we find a condition weaker than cgp so that other groups also appear in the Elekes-Szabó theorem in the case $V = \Gamma_G$ where Γ_G is the graph of multiplication of some complex algebraic group?

Approximate subgroups 1.2

Definition: A subset X in a group G is called a K-approximate subgroup if $e_G \in X$, $X = X^{-1}$ and $XX \subseteq ZX$ for some $Z \subseteq G$ with $|Z| \leq K$. If X is a broad set in some ultraproduct, we call X a coarse approximate subgroup if X is a K-approximate subgroup for $K \in \mathbb{R}^{\mathcal{U}}$ with $\boldsymbol{\delta}(K) = 0$.

Prototypical examples:

- Generalised arithmetic progressions in abelian groups:
 - $\mathcal{A}(x_1,\ldots,x_k;N) := \sum_{i \le k} c_i x_i$ where $c_i \in [-N,N] \cap \mathbb{Z}$.
- Nilprogressions of rank k and length N in nilpotent groups of nilpotency class s: $P(x_1, \ldots, x_k; N)$ collection of words using $\{x_i^{\pm 1}, i \leq k\}$ and each x_i and its inverse appear at most N-times between them. They are $C_{k,s}$ -approximate subgroups for some $C_{k,s} \in \mathbb{N}$.

• No power-saving for graphs of group multiplication implies existence of coarse approximate subgroups.

The Balog-Szemerédi-Gowers theorem (Tao, 2008)

Let G be an ultraproduct of groups and Γ_G be its graph of multiplication. Suppose there are broad sets A, B, C witnessing that Γ_G admits no power-saving. Then there exists a broad coarse approximate subgroup X such that $\delta(X) = \delta(A) = \delta(xX \cap A)$ for some $x \in G$.

? In complex algebraic groups when can we have coarse approximate subgroups ?

Theorem (Breuillard-Green-Tao 2011)

Suppose X is a broad coarse approximate subgroup in $\operatorname{GL}_n(\mathbb{C}^{\mathcal{U}})$. Then there exists a nilpotent algebraic subgroup H and a coarse approximate subgroup $A \subseteq H$ such that $\delta(X) = \delta(A)$ and $X \subseteq ZA$ for some $Z \subseteq \operatorname{GL}_n(\mathbb{C}^{\mathcal{U}})$ with $\delta(Z) = 0$.

Conclusion: the reasonable groups that can and should appear in the Elekes-Szabó theorem for graph of complex group multiplications are nilpotent algebraic groups.

$\mathbf{2}$ The main result

Weak general position 2.1

• Let V be an irreducible variety over $\mathbb{C}^{\mathcal{U}}$. A broad set $X \subseteq V$ is called in weak general position (wgp) if $\delta(X \cap W) < \delta(X)$ for any proper subvariety $W \subseteq V$ over $\mathbb{C}^{\mathcal{U}}$.

Main theorem (Bays, Dobrowolski, Z.)

Let $G = G(\mathbb{C}^{\mathcal{U}})$ be a connected algebraic group defined over \mathbb{C} and $\Gamma_G \subseteq G^3$ be its graph of multiplication. The following are equivalent.

(i) Γ_G has no power-saving witnessed by some broad wgp sets $A, B, C \subseteq G$.

(ii) G is nilpotent.

(iii) There exists a broad wgp coarse approximate subgroup $X \subseteq G$.

2.2Generic Mordell-Lang

• In a nilpotent complex algebraic group, how can we find wgp coarse approximate subgroups?

Idea: Take nilprogressions with independent generic elements as generators.

Obstacle: Taking nilprogressions of nonstandard infinite rank (number of generators) doesn't work for nilpotent groups.

? Are generalised arithmetic progressions of finite rank wgp in connected commutative complex algebraic groups ?

• Yes, if G is a semi-abelian variety by Mordell-Lang.

Mordell-Lang (semi-abelian, char=0, uniformity) (Faltings, Vojta, McQuillan.; Scanlon 2001)

Let $S = S(\mathbb{C})$ be a complex semi-abelian variety and Δ be a finitely generated subgroup. Let $(W_b)_{b\in B}$ be an algebraic family of proper subvarieties of S. Then there are proper algebraic subgroups H_1, \ldots, H_m such that for any $b \in B$ there are $a_{1,b}, \ldots, a_{m,b}$ and $I \subseteq \{1, \ldots, m\}$ with $(W_b \cap \Delta)^{\operatorname{Zar}} = \bigcup_{i \in I} a_{i,b} + H_i.$

Proof of wgp in the semi-abelian case: Let $\mathcal{A}(x_1,\ldots,x_n;N^*) \subseteq S^{\mathcal{U}}$ be a generalised arithmetic progression in some semi-abelian variety $S = S(\mathbb{C})$ with x_1, \ldots, x_n independent generics in S and $0 < \boldsymbol{\delta}(N^*) < \infty$. Let $\Delta := \langle x_1, \ldots, x_n \rangle$. Suppose $W := \prod_{s \in \mathcal{U}} W_s$ is a proper subvariety of $S^{\mathcal{U}}$. Then $W \cap \mathcal{A}(x_1, \ldots, x_n; N^*) \subseteq W \cap \Delta^{\mathcal{U}}$, and each $W_s \cap \Delta \subseteq \bigcup_{i \in I_s} a_{i,s} + H_i$. As any non-zero element in Δ is generic and H_i is proper, any translate of H_i can contain at most one element in Δ . Hence $|W_s \cap \Delta| \le m \text{ and } |W \cap \mathcal{A}(x_1, \dots, x_n; N^*)| \le m.$

Facts: Let G be a connected commutative complex algebraic group. Then G is an extension of a semi-abelian variety by a vector group, i.e. we have the following exact sequence:

 $0 \to V \to G \xrightarrow{\pi} S \to 0,$

where V is a vector group, i.e. isomorphic to \mathbb{G}_a^n for some n and S is semi-abelian.

Let $G_0 := (G[\infty])^{\text{zar}}$ be the Zariski closure of torsion points in G, then $\pi(G_0) = S$ and $G = G_0 \oplus V_0$ for some vector subgroup $V_0 \leq G$.

Generic Mordell-Lang (commutative, char=0, weak uniformity) (BDZ) Let $G = G_0 \oplus V_0$ be a connected commutative complex algebraic group. Let r > 0 and $\bar{g} \in G^r$ be a generic point in G^r . Let $\Delta = \langle \overline{g} \rangle$ be the finitely generated subgroup of G and $(\mathbb{C}^*, \Delta^*) \succcurlyeq (\mathbb{C}, \Delta)$ be an elementary extension.

Let $W \subseteq G(C^*)$ be an infinite irreducible subvariety over \mathbb{C}^* . Suppose $W = (W \cap \Delta^*)^{\text{Zar}}$. Then there exists some irreducible subvariety $W' \subseteq V_0(\mathbb{C}^*)$ such that $W = G_0(\mathbb{C}^*) + W'.$

Remark: The proof follows the strategy and techniques developed in [Hrushovski 1996] and subsequent papers using the theory of DCF_0 , and is closely related to [Hrushovski and Pillay, 2000].

Corollary

Let $G = G_0 \oplus V_0$ be a connected commutative complex algebraic group. Then there is r = $\max\{\dim(V_0), 1\} \in \mathbb{N}^{>0}$ such that for any $\ell \geq r$, for any tuple $(g_1, \ldots, g_\ell) \in G^\ell$ generic in G^ℓ , any broad generalised arithmetic progression $\mathcal{A}(g_1, \ldots, g_\ell; N^*)$ generated by $\{g_1, \ldots, g_\ell\}$ is wgp.

$\mathbf{2.3}$ Wgp nilprogressions

Theorem (BDZ)

Let G be a connected nilpotent complex algebraic group. Then there is $r \in \mathbb{N}^{>0}$ depending on G such that for any $\ell \geq r$, for any tuple $(g_1, \ldots, g_\ell) \in G^\ell$ generic in G^ℓ , any broad nilprogression $P(g_1,\ldots,g_\ell;N^*)$ generated by $\{g_1,\ldots,g_\ell\}$ is wgp.

Remark: We work with nilboxes in the Lie algebra \mathfrak{g} of G and induct on the nilpotency class of G.

References:

• Martin Bays and Emmanuel Breuillard. Projective geometries arising from Elekes-Szabó problems, arXiv:1806.03422, 2018.

• Emmanuel Breuillard, Ben Green, and Terence Tao. Approximate subgroups of linear groups. Geom. Funct. Anal., 21(4):774–819, 2011.

• Emmanuel Breuillard and Hong Wang. Erdős geometry and the group configuration. Oberwolfach report, Model Theory Workshop, 2016.

• György Elekes and Endre Szabó. How to find groups? (and how to use them in Erdős geometry?).

Combinatorica, 32(5):537–571, 2012.

• Ehud Hrushovski. The Mordell-Lang conjecture for function fields. J. Amer. Math. Soc., 9:667-690, 1996.

• Ehud Hrushovski. On pseudo-finite dimensions. Notre Dame J. Form. Log., 54(3-4):463-495, 2013.

• Ehud Hrushovski and Anand Pillay. Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties. Amer. J. Math., 122(3): 439-450, 2000.

• László Pyber and Endre Szabó. Growth in finite simple groups of Lie type. J. Amer. Math. Soc., 29:95-146, 2016.

- Thomas Scanlon. Uniformity in the Mordell-Lang conjecture. ArXiv:math/0105238, 2001.
- Terence Tao. Product set estimates for non-commutative groups. Combinatorica, 28: 547–594, 2008.