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State space models
A state space model is given by a system of ODEs

ẋ = f (x, µ, u) (1)

y = g(x, µ, u) (2)

and possibly a constraint

0 = h(x, µ, u) (3)

x is a vector of state variables
u is a vector of input variables
y is a vector of output variables
µ is a vector of constants called the parameters
For us, f , g , and h are vectors of rational functions with rational
coefficient and will usually omit the constraint Equation 3.
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Kermack and McKendrick, Proceedings of the Royal Society
of Edinburgh, 1927
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Kermack-McKendrick model with constant parameters
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Kermack-McKendrick model with constant parameters

dx

dt
= −κxy

dy

dt
= κxy − ly

dz

dt
= ly

x + y + z = N

x represents the number of susceptible people in the population
y represents the number of infected / infectious persons
z represents the number of recovered (or dead) people
κ, l , and N are constants representing infectivity, recovery (plus
death) rates, and the total population.

Thomas Scanlon (UC Berkeley) Model theory meets modeling 11 July 2021 6 / 24



Identifiability

We will be interested in the parameter identification problem: can the
parameters µ be recovered from the output y? If so, how? Sometimes, this
problem goes under the name of system identification.

There are variants of this problem in which the input variables u are
assumed to be known or not. There are related problems of determining the
state x from the output y or even of inferring the input u from the output y.

We shall interpret recovered from as definable (relative to the theory of
differentially closed fields of characteristic zero) from, which by quantifier
elimination is equivalent to expressed as a differential rational function of.
Moreover, we shall ask (x, y) to be a generic solution of the equations for a
sufficiently general (even generic) u. So, given such generic solutions to
Equations 1 and 2, we wish to compute Q(µ) ∩Q〈u, y〉 and, in particular,
wish to determine whether this intersection is Q(µ).
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Identifiability in the Kermack-McKendrick model
The parameters κ and l are identifiable in the Kermack-McKendrick model
if we take both x and y as outputs.

dx

dt
= −κxy

dy

dt
= κxy − ly

dz

dt
= ly

x + y + z = N

κ =
−ẋ
xy

l =
−(ẋ + ẏ)

y
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Canonical parameters

There may be obvious reasons why it is impossible to identify the
parameters.

For example, if some transcendental component of µ does not appear
in Equation 1 at all, then it would be impossible to compute µ from y.
For example, suppose that µ = (µ1, µ2) and our equation is
ẋ = x2 + µ1.
For a less trivial example, it may happen that the system is equivalent
to one in which the coefficients are rational functions of µ. For
example, our equations might be ẋ = x2 + µ1 + µ2 and y = x .

At the very least, if we wish for the parameters to be indentifiable, then
they need to be canonical parameters: any other choice of parameters
would give an inequivalent system of equations.
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Model theory meets modeling at CUNY, Spring 2019
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Canonical parameters, model theoretically
The canonical parameter is a standard notion of model theory.

We say that a formula φ(x, y) has canonical parameters if for any two
choices of parameters c and d, we have that (∀x)(φ(x, c)↔ φ(x, d)) if and
only if c = d. In this case, we would say that c is the canonical parameter
for φ(x, c).

We say that our theory eliminates imaginaries if for each formula φ(x, y)
there is some formula ψ(x, z) so that

every instance of φ is equivalent to an instance of ψ:
(∀y)(∃z)(∀x)(φ(x, y)↔ ψ(x, z))
every instance of ψ is equivalent to an instance of φ, and
ψ(x, z) has canonical parameters

For us, the key point is that the theory of differentially closed fields of
characteristic zero, DCF0, eliminates imaginaries. So, every finite system of
ODEs (and inequalities) is equivalent to one with canonical parameters.

We will need the related, but more refined, notion of a canonical base of a
type in a stable theory.
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Canonical bases: Classification Theory

Thomas Scanlon (UC Berkeley) Model theory meets modeling 11 July 2021 12 / 24



Canonical bases: Theorem III.6.10

134 GLOBAL THEORY [OH. 111, f 6 

THEOREM 6.10 (The Canonicity Theorem for Types): Let T be stable. 
In CQ, for e v e y  statiomy m-typep there is a 8et A = Cb(p) (the canonical 
h e  of p )  and a s t a t k r y  type q E P ( A ) ,  q = Ctp(p) ( = tlre canonical 
type of p )  euch t W :  

(1) p and q are pralkl. 
(2) Any automorlphh F of Cq t a b  p to a parallel type iff F f A = 

( 3 )  Tor any a E C q ,  a E A iff every autommphism. F of Cq which take8 

(4) There is B E A ,  I BI < K(T) Over which no type parallel to p forb. 
(6 )  If a type in Sm(C) is parallel to p and CEO@ not fork over B E C then 

(6)  A E dcl(Dom p) .  

identity. 

p to a parallel type necessarily satisfie F(a) = a. 

A E ad B. 

Proqf. Let r E Sm(QBO) be parallel to p. By 11, 2.2 for every 'p(Z; 8) there 
is a formula &(g; 5,) which defines r f 9, i.e., 

C+,[Z; E,] o 'p(3; 3) E r .  

A = dcl{e,/E*.: 9 E Lea}, 
Let 

q = r f A .  
Clearly r is definable over A ,  hence does not fork over A by 4.11. So 

q is stationary and q, r are parallel, hence p ,  q are parallel (this is (1)). 
Clearly an automorphism F of Cq takes p to a parallel type iff 

F(r) = r if€ for every 'p, k+&; a,) = +,(g; F(E,)) iff for every 'p, E,IE,. 
= F(E,J/E*e ifF F f A = identity (this is (2)). If a $ A  then as A = 
dcl A there is a' # a, tp(a, A )  = tp(a', A )  hence there is an auto- 
morphism P of QBO, P r A = identity and P(a)  = a'; so P(r) = r, 
F(a) # a' (this is the missing part in (3)). F'rom (3) it is clear that A 
does not depend on the particular choice of the $I,: Also A depends only 
on r ,  i.e., on the equivalence class of p under parallelism. The same is 
true for q, hence the notation A = Cb(p), q = Ctp(p) is justified. 

As we could have chosen E, E Domp (by 11, 2.12) and as E,/E*. E 

dcl(5,) {E,/E**: p€Leq} E dcl(Domp). Hence by 6.2(2), (3) A E 
dcl(Dom p), so (6) holds. 
As for (4), for some B s A, 1B1 < K ( T ) ,  q does not fork over B, but 

r does not fork over A, hence by 4.4 r does not fork over B. As any type 
parallel to p is c r also (4) holds. 

So we &118 left with (6). By 4.4; r does not fork over B, hence is 
definable almost over B, hence by 6.9(2) definable over ad B, so we 
could have chosen Ee E acl B hence A E acl B. 
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Some stability theory

Fix a saturated model M |= T of some theory T in a language L , a
natural number m, sets A ⊆ B ⊆ M with |B| < ||M||, and an m-type
p ∈ Sm(B). We write x = (x1, . . . , xm).

p is A-definable if for each formula φ(x, y), there is a formula
ψ(y) ∈ LA so that

{b ∈ B |y| : φ(x, b) ∈ p} = {b ∈ B |y| : M |= ψ(b)}

p is stationary if there is a unique B-definable extension of p to a type
over M.
A is a canonical base of p if p is stationary, A-definable, and for any
automorphism σ : M → M of M, the types p and σ(p) have the same
B-definable (respectively, σ(B)-definable) extensions to M if and only
if σ fixes A pointwise. We write A = Cb(p).
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Canonical bases in differentially closed fields

We specialize the definitions to the case of DCF0.

Let (K , ∂) be a differential field, k ⊆ K a differential subfield, and a a
tuple from K . We write I (a/k) := {f ∈ k{x} : f (a) = 0} for the ideal of
a over k .

The type of a of k is stationary if and only if I (a/k) is absolutely
prime. That is, the ideal generated by I (a/k) in kalg{x} is prime.
Provided that tp(a/k) is stationary, the canonical base of a over k is
the differential field of definition of I (a/k) .

The canonical base Cb(a/k) may be realized as the differential field
generated by the canonical parameters of a formula isolating the type of a
over k up to dependence. Algebraically, it may be realized as the
differential field generated by the coefficients of the monic differential
polynomials in a characteristic generating set for I (a/k).
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Canonical base and parameter identifiability
Let us restrict to a simple case where our equation takes the form

ẋ = f (x, µ)

y = x

so that there are no input variables and the state and output variables are
identical.

If we set k = Q(µ) and let a be a generic solution, then the type of a over
k is stationary.

If µ is a canonical parameter for the formula ẋ = f (x, µ), then
k = Cb(a/k).

So, the parameter identifiability problem reduces to asking whether the
canonical base Cb(a/k) is contained in the differential field generated by a,
or in more model theoretic terms, in the definable closure of a realization of
the generic type of this system.
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Abstract failure of single experiment identifiability

In general stable theories it is “rare” for the canonical base of a type to
be definable (or even algebraic) from a single realization.
Theories where this always happens are (provably) degenerate or
closely related to linear algebra.
Computing the canonical base from one solution even for ordinary
polynomial equations can be impossible. If f (x, y) is a polynomial over
Q for which f (x, b) is always absolutely irreducible, then a generic
solution to f (a, b) = 0 will be stationary over Q(b) = Cb(a/Q(b)). If
x = (x1, . . . , xn) has n > 2, then it is not possible to compute b from
a.
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A failure of single-experiment identifiability
A standard example relative to the theory of algebraically closed fields
showing that the canonical base need not be algebraic over a single
realization of a type comes families of lines in the plane.

Let b, c, d ∈ C be three algebraically independent elements. Set
e := bd + c and let k = Q(d , e).

The type tp((b, c)/k) is generated by the formulae x2 + dx1 = e and
p(x1) 6= 0 for p ∈ k[x ]r {0}. So, Cb((b, c)/k) = k .

In particular, Cb((b, c)/k) 6⊆ Q(b, c).

Consider a satisfying ∂(a) = ba+ c . A simple computation shows that
(a, b) is the generic solution to the following system.

ẋ1 = x1x2 − dx2 + e

ẋ2 = 0

This system violates single experiment identifiability.
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Multi-experiment identifiability

Given an input-output system

ẋ = f (x, µ, u)
y = g(x, µ, u)

one might ask whether the parameters µ are identifiable from multiple
independent experiments.

Of course, as before we must assume that the parameters µ are
canonical.
If the answer is yes, then we would like to compute a bound on the
number of experiments needed.
The bounds may depend on whether we vary the input variable or not
between the various experiments.
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Model theory meets identifiability problems in systems
biology at AIM, Summer 2019
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Computing canonical bases from Morley sequences

There is a very general model theoretic result which says that
multi-experiment parameter identification is always possible, even if we
allow our parameters to be nonconstant.

Theorem
In any totally transcendental theory if p is a stationary type over the set B ,
then there is a number N so that if a1, . . . , aN is a sequence of independent
realizations of p, then Cb(p) is definable from 〈a1, . . . , aN〉. Moreover, if b
is a tuple from which Cb(p) is definable and the Lascar rank of b is s < ω,
then it suffices to take N = s + 1.
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Interpreting the general theorem for systems of ODEs

The theory of differentially closed fields of characteristic zero is the
quintessential example of a totally transcendental theory.
Independence may be defined differential algebraically: if tp(a/L) is
stationary over the differential field L and M is an differential
extension field, then a is independent from L over M if I (a/M)
generates I (a/L). A sequence 〈a1, . . . , an〉 is independent over the
differential field M if for each i < n, ai+1 is stationary over M and
independent from M〈a1, . . . , ai 〉 over M.
In a differentially closed field, an element c is definable from some
tuple b just in case c ∈ Q〈b〉.
The Lascar rank is a dimension defined using (in)dependence. For us,
the main point is that the Lascar rank of a tuple b is bounded above
by tr. degQ〈b〉 and when b is a tuple of constants, the Lascar rank is
equal to this transcendence degree.
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Algorithms

Interpreting the Shelah reflection principle as Lagrange interpolation,
we produced an algorithm to compute an upper bound on the number
of independent experiments that would be necessary to recover the
parameters.
Using general results on canonical bases, we produced an algorithm to
compute the identifiable parameters. That is, even if the parameters in
our original model are not identifiable from a singe experiment, there
may be nontrivial rational combinations of those parameters which are
identifiable and we work out what those will be.
These algorithms have been implemented in the Julia language and
are available at https://github.com/pogudingleb.
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Extensions

The general results from model theory we have described work equally
well for PDEs, but what specific consequences they have and the
computational approach remain to be investigated.
Extensions to difference equations and difference-differential equations
should be possible, but here the model theory is somewhat more
complicated.
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