Some applications of the theory of Katětov order to ideal convergence

Hang Zhang, School of Mathematics, Southwest Jiaotong University Shuguo Zhang, College of Mathematics, Sichuan University

July, 2021, Tianjin

Some applications of the theory of Katětov order to ideal convergence

★ 3 → < 3</p>

2 \mathcal{I} -closed sets and main problem

- 2 \mathcal{I} -closed sets and main problem
- Basics on Katětov order

< ∃ > < ∃ >

- 2 \mathcal{I} -closed sets and main problem
- Basics on Katětov order
- Applications of Katětov order to the main problem

Some applications of the theory of Katětov order to ideal convergence

4 B 6 4 B 6

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g., $\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$, and $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$ Denote $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. A set $A \subseteq \omega$ is called \mathcal{I} -positive if $A \in \mathcal{I}^+$.

• • = • • = •

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g., $\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$, and $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$ Denote $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. A set $A \subseteq \omega$ is called \mathcal{I} -positive if $A \in \mathcal{I}^+$. An ideal \mathcal{I} is tall (or dense) if for every infinite $A \subseteq \omega$ there is

 $I \in \mathcal{I}$ such that $A \cap I$ is infinite.

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$
Denote $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. A set $A \subseteq \omega$ is called \mathcal{I} -positive if
 $A \in \mathcal{I}^+$.
An ideal \mathcal{I} is tall (or dense) if for every infinite $A \subseteq \omega$ there is
 $I \in \mathcal{I}$ such that $A \cap I$ is infinite.
e.g. \mathcal{I}_1 is tall

$$\frac{1}{n}$$

(*) *) *) *)

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g.,
$$\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$$
, and
 $\mathcal{I}_{\frac{1}{n}} = \{A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty\}$
Denote $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. A set $A \subseteq \omega$ is called \mathcal{I} -positive if $A \in \mathcal{I}^+$.
An ideal \mathcal{I} is tall (or dense) if for every infinite $A \subseteq \omega$ there is $I \in \mathcal{I}$ such that $A \cap I$ is infinite.
e.g., $\mathcal{I}_{\frac{1}{n}}$ is tall, while $\mathcal{I}_{\frac{1}{n}} \bigoplus \mathfrak{Fr}$ is not!

A B M A B M

An ideal \mathcal{I} on a countable set C is a family of subsets of C such that \mathcal{I} is closed with finite unions and subsets.

e.g., $\mathfrak{Fr} = \{F \subset C : F \text{ is a finite set}\}$, and $\mathcal{I}_{\underline{1}} = \{ A \subset \omega : \sum_{n \in A} \frac{1}{n} < \infty \}$ Denote $\mathcal{I}^+ = \mathcal{P}(\omega) \setminus \mathcal{I}$. A set $A \subseteq \omega$ is called \mathcal{I} -positive if $A \in \mathcal{I}^+$ An ideal \mathcal{I} is tall (or dense) if for every infinite $A \subseteq \omega$ there is $I \in \mathcal{I}$ such that $A \cap I$ is infinite. e.g., $\mathcal{I}_{\underline{1}}$ is tall, while $\mathcal{I}_{\underline{1}} \bigoplus \mathfrak{Fr}$ is not!(sum of two ideals: $\mathcal{I} \bigoplus \overset{n}{\mathcal{J}} = \{A \cup B : A \overset{n}{\subseteq} C, B \subseteq D, A \in \mathcal{I}, B \in \mathcal{J}\}$ is an ideal on $C \cup D$, where \mathcal{I} is an ideal on C and \mathcal{J} is an ideal on D and $C \cap D = \emptyset$

伺 と く ヨ と く ヨ と … ヨ

Let X be a topological space and ${\mathcal I}$ be an ideal on ω

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x.

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense.

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense. If a sequence $\{x_n : n < \omega\}$ is \mathfrak{Fr} -convergent to x, we just say $\{x_n : n < \omega\}$ is convergent to x.

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense. If a sequence $\{x_n : n < \omega\}$ is \mathfrak{Fr} -convergent to x, we just say $\{x_n : n < \omega\}$ is convergent to x. For every infnite $A \subset \omega$, the corresponding subsequence of $\{x_n : n < \omega\}$ will be denoted by $\{x_n\}_{n \in A}$.

伺 と く ヨ と く ヨ と … ヨ

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense. If a sequence $\{x_n : n < \omega\}$ is \mathfrak{Fr} -convergent to x, we just say $\{x_n : n < \omega\}$ is convergent to x. For every infnite $A \subset \omega$, the corresponding subsequence of $\{x_n : n < \omega\}$ will be denoted by $\{x_n\}_{n \in A}$. Note that a subsequence $\{x_n\}_{n \in A}$ is \mathcal{I} -convergent to x means:

伺 と く ヨ と く ヨ と …

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n : x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense. If a sequence $\{x_n : n < \omega\}$ is \mathfrak{Fr} -convergent to x, we just say $\{x_n : n < \omega\}$ is convergent to x. For every infnite $A \subset \omega$, the corresponding subsequence of $\{x_n : n < \omega\}$ will be denoted by $\{x_n\}_{n \in A}$. Note that a subsequence $\{x_n\}_{n \in A}$ is \mathcal{I} -convergent to x means: if $\{a_1, a_2, \cdots, a_k, \cdots\}$ is the increasing enumeration of A,

伺 と く ヨ と く ヨ と … ヨ

Let X be a topological space and \mathcal{I} be an ideal on ω Say a sequence $\{x_n : n < \omega\}$ in X is \mathcal{I} -convergent to $x \in X$ if $\{n: x_n \notin U\} \in \mathcal{I}$ for every open neighborhood U of x. Note \mathfrak{Fr} -convergence means the convergence in classical sense. If a sequence $\{x_n : n < \omega\}$ is \mathfrak{Fr} -convergent to x, we just say $\{x_n : n < \omega\}$ is convergent to x. For every infnite $A \subset \omega$, the corresponding subsequence of $\{x_n : n < \omega\}$ will be denoted by $\{x_n\}_{n \in A}$. Note that a subsequence $\{x_n\}_{n \in A}$ is \mathcal{I} -convergent to x means: if $\{a_1, a_2, \cdots, a_k, \cdots\}$ is the increasing enumeration of A, then $\{k < \omega : x_{a_k} \notin U\} \in \mathcal{I}$ for every open neighborhood U of x.

\mathcal{I} -closed sets

In 2018, X.G. Zhou, L. Liu and S. Lin introduced the following:

A B > A B >

$\mathcal{I}\text{-}\mathsf{closed}$ sets

In 2018, X.G. Zhou, L. Liu and S. Lin introduced the following: A set $A \subset X$ is called \mathcal{I} -closed if for every $x \in X$ we have:

\mathcal{I} -closed sets

In 2018, X.G. Zhou, L. Liu and S. Lin introduced the following: A set $A \subset X$ is called \mathcal{I} -closed if for every $x \in X$ we have: $x \in A$ if there is a sequence $\{x_n\} \subset A$ such that $\{x_n\}$ is \mathcal{I} -convergent to x.

.

Main problem

It is clear for $\mathcal{I} = \mathfrak{Fr}$ the following is ture in any space: every finite union of \mathcal{I} -closed subsets is \mathcal{I} -closed.

< 3 > < 3

Main problem

It is clear for $\mathcal{I}=\mathfrak{Fr}$ the following is ture in any space: every finite union of $\mathcal{I}\text{-closed}$ subsets is $\mathcal{I}\text{-closed}.$

Theorem (X.G. Zhou, L. Liu and S. Lin)

Let X be a topological space and \mathcal{I} be a maximal ideal. Then every finite union of \mathcal{I} -closed subsets of X is \mathcal{I} -closed.

Main problem

It is clear for $\mathcal{I}=\mathfrak{Fr}$ the following is ture in any space: every finite union of $\mathcal{I}\text{-closed}$ subsets is $\mathcal{I}\text{-closed}.$

Theorem (X.G. Zhou, L. Liu and S. Lin)

Let X be a topological space and \mathcal{I} be a maximal ideal. Then every finite union of \mathcal{I} -closed subsets of X is \mathcal{I} -closed.

Problem (X.G. Zhou, L. Liu and S. Lin)

Whether every finite union of *I*-closed subsets is *I*-closed for every ideal *I*?

\mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if

(< ∃) < ∃)</p>

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$.

- ₹ 🖹 🕨

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$.

- ₹ 🖹 🕨

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$.

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$. For an infinite set $A \subset \omega$ we define $\mathcal{I} | A = \{I \cap A : I \in \mathcal{I}\}$.

- A I - A I

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$. For an infinite set $A \subset \omega$ we define $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$. Then $\mathcal{I}|A$ is an ideal on A.

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$. For an infinite set $A \subset \omega$ we define $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$. Then $\mathcal{I}|A$ is an ideal on A. \mathcal{I} is Katětov below $\mathcal{I}|A$ for every infinite $A \subset \omega$.

ヨッ イヨッ イヨッ
Katětov order

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$. For an infinite set $A \subset \omega$ we define $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$. Then $\mathcal{I}|A$ is an ideal on A. \mathcal{I} is Katětov below $\mathcal{I}|A$ for every infinite $A \subset \omega$. An ideal \mathcal{I} on ω is *K*-uniform if $\mathcal{I}|A \leq_K \mathcal{I}$ for every \mathcal{I} -positive set A.

Katětov order

 \mathcal{I} is Katětov below \mathcal{J} , denoted by $\mathcal{I} \leq_K \mathcal{J}$, if there is an $f: \omega \to \omega$ such that $f^{-1}(A) \in \mathcal{J}$ for every $A \in \mathcal{I}$. If $\mathcal{I} \leq_K \mathcal{J}$ and $\mathcal{J} \leq_K \mathcal{I}$, then we say \mathcal{I}, \mathcal{J} are Katětov equivalent, denoted by $\mathcal{I} =_K \mathcal{J}$. For an infinite set $A \subset \omega$ we define $\mathcal{I}|A = \{I \cap A : I \in \mathcal{I}\}$. Then $\mathcal{I}|A$ is an ideal on A. \mathcal{I} is Katětov below $\mathcal{I}|A$ for every infinite $A \subset \omega$. An ideal \mathcal{I} on ω is K-uniform if $\mathcal{I}|A \leq_K \mathcal{I}$ for every \mathcal{I} -positive set A. (i.e., $\mathcal{I}|A =_K \mathcal{I}$ for every \mathcal{I} -positive set A)

ZFC positive answer

Theorem

Let \mathcal{I} be a K-uniform ideal on ω . Then \mathcal{I} -closedness is preserved by finite unions in any space.

Image: Image:

ZFC positive answer

Theorem

Let \mathcal{I} be a K-uniform ideal on ω . Then \mathcal{I} -closedness is preserved by finite unions in any space.

This generalizes the theorem of X.G. Zhou, L. Liu and S. Lin, since we have:

Image: Image:

ZFC positive answer

Theorem

Let \mathcal{I} be a K-uniform ideal on ω . Then \mathcal{I} -closedness is preserved by finite unions in any space.

This generalizes the theorem of X.G. Zhou, L. Liu and S. Lin, since we have:

Theorem (D.Meza)

Every maximal ideal is K-uniform.

Some applications of the theory of Katětov order to ideal convergence

★ ∃ → < ∃</p>

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

(▲ 문 ▶ (▲ 문 ▶

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

Theorem

There exist an F_{σ} ideal \mathcal{I} and a countable zero-dimensional Hausdorff space X with $\chi(X) = \mathfrak{c}$ such that $Y \cup Z$ is not \mathcal{I} -closed for some (disjoint) \mathcal{I} -closed subsets Y, Z of X.

A B + A B +

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

Theorem

There exist an F_{σ} ideal \mathcal{I} and a countable zero-dimensional Hausdorff space X with $\chi(X) = \mathfrak{c}$ such that $Y \cup Z$ is not \mathcal{I} -closed for some (disjoint) \mathcal{I} -closed subsets Y, Z of X.

KEY POINT.

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

Theorem

There exist an F_{σ} ideal \mathcal{I} and a countable zero-dimensional Hausdorff space X with $\chi(X) = \mathfrak{c}$ such that $Y \cup Z$ is not \mathcal{I} -closed for some (disjoint) \mathcal{I} -closed subsets Y, Z of X.

KEY POINT. Let \mathcal{I} be an ideal on ω and $A \subset \omega$. Denote $X(\mathcal{I}) = \omega \cup \{\omega\}$ in which each $n \in \omega$ is isolated and the topological base at ω is $\{\{\omega\} \cup F : F \in \mathcal{I}^*\}$.

伺 と く ヨ と く ヨ と

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

Theorem

There exist an F_{σ} ideal \mathcal{I} and a countable zero-dimensional Hausdorff space X with $\chi(X) = \mathfrak{c}$ such that $Y \cup Z$ is not \mathcal{I} -closed for some (disjoint) \mathcal{I} -closed subsets Y, Z of X.

KEY POINT. Let \mathcal{I} be an ideal on ω and $A \subset \omega$. Denote $X(\mathcal{I}) = \omega \cup \{\omega\}$ in which each $n \in \omega$ is isolated and the topological base at ω is $\{\{\omega\} \cup F : F \in \mathcal{I}^*\}$. TFAE:

A ⊆ ω is *I*-closed in X(*I*);
no sequence in A can be *I*-convergent to ω in X(*I*);
I|A ≰_K *I*.

(同) (日) (日) (日)

An ideal \mathcal{I} is F_{σ} if \mathcal{I} is an F_{σ} subset of the Cantor space 2^{ω} via characteristic functions.

Theorem

There exist an F_{σ} ideal \mathcal{I} and a countable zero-dimensional Hausdorff space X with $\chi(X) = \mathfrak{c}$ such that $Y \cup Z$ is not \mathcal{I} -closed for some (disjoint) \mathcal{I} -closed subsets Y, Z of X.

KEY POINT. Let \mathcal{I} be an ideal on ω and $A \subset \omega$. Denote $X(\mathcal{I}) = \omega \cup \{\omega\}$ in which each $n \in \omega$ is isolated and the topological base at ω is $\{\{\omega\} \cup F : F \in \mathcal{I}^*\}$. TFAE:

Proof sketch.

Let
$$\mathcal{I} = \mathcal{S} \bigoplus \mathcal{ED}$$
 and $X = X(\mathcal{I})$. Use $\mathcal{S} \nleq_K \mathcal{I}$ and $\mathcal{ED} \nleq_K \mathcal{I}$. \Box

Some applications of the theory of Katětov order to ideal converge

Let $\Phi(X)$ be the formula:

Some applications of the theory of Katětov order to ideal converg

▶ < 문 ▶ < 문 ▶</p>

Let $\Phi(X)$ be the formula:

"for every tall F_{σ} ideal $\mathcal{I} \supset \mathfrak{Fr}$, \mathcal{I} -closedness is preserved by finite unions in X"

A B + A B +

Let $\Phi(X)$ be the formula:

"for every tall F_{σ} ideal $\mathcal{I} \supset \mathfrak{Fr}$, \mathcal{I} -closedness is preserved by finite unions in X"

Lemma

Let X be a space and \mathcal{I} be an ideal on ω such that $\mathfrak{Fr} \subseteq \mathcal{I}$. If $\chi(X) < \mathfrak{p}$, then \mathcal{I} -closedness is preserved by finite unions in X.

Let $\Phi(X)$ be the formula:

"for every tall F_{σ} ideal $\mathcal{I} \supset \mathfrak{Fr}$, \mathcal{I} -closedness is preserved by finite unions in X"

Lemma

Let X be a space and \mathcal{I} be an ideal on ω such that $\mathfrak{Fr} \subseteq \mathcal{I}$. If $\chi(X) < \mathfrak{p}$, then \mathcal{I} -closedness is preserved by finite unions in X.

$$\begin{array}{ccc} \chi(X) & < \mathfrak{p} & \in [\mathfrak{p}, \mathfrak{c}) & \geq \mathfrak{c} \\ \hline \Phi(X) & \mathsf{True} & \mathsf{False} \end{array}$$

Some applications of the theory of Katětov order to ideal converg

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\Phi(X)$ be the formula:

"for every tall F_{σ} ideal $\mathcal{I} \supset \mathfrak{Fr}$, \mathcal{I} -closedness is preserved by finite unions in X"

Lemma

Let X be a space and \mathcal{I} be an ideal on ω such that $\mathfrak{Fr} \subseteq \mathcal{I}$. If $\chi(X) < \mathfrak{p}$, then \mathcal{I} -closedness is preserved by finite unions in X.

$$\begin{array}{ccc} \chi(X) & < \mathfrak{p} & \in [\mathfrak{p}, \mathfrak{c}) & \geq \mathfrak{c} \\ \hline \Phi(X) & \mathsf{True} & \mathsf{False} \end{array}$$

Some applications of the theory of Katětov order to ideal converg

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\Phi(X)$ be the formula:

"for every tall F_{σ} ideal $\mathcal{I} \supset \mathfrak{Fr}$, \mathcal{I} -closedness is preserved by finite unions in X"

Lemma

Let X be a space and \mathcal{I} be an ideal on ω such that $\mathfrak{Fr} \subseteq \mathcal{I}$. If $\chi(X) < \mathfrak{p}$, then \mathcal{I} -closedness is preserved by finite unions in X.

$$\begin{array}{ccc} \chi(X) & < \mathfrak{p} & \in [\mathfrak{p}, \mathfrak{c}) & \geq \mathfrak{c} \\ \Phi(X) & \mathsf{True} & ? & \mathsf{False} \end{array}$$

Some applications of the theory of Katětov order to ideal converg

伺 と く ヨ と く ヨ と

Theorem

 There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;

Proof sketch.

Some applications of the theory of Katětov order to ideal converg

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.</p>

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$. (2)Recall $\mathcal{I}_f = \{A \subset \omega : \sum_{n \in A} f(n) < \infty\}$

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}_{\alpha}^{*})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$. (2)Recall $\mathcal{I}_{f} = \{A \subset \omega : \sum_{n \in A} f(n) < \infty\}$ where $f : \omega \to \mathbb{R}^{+}$ such that $\sum_{n \in \omega} f(n) = \infty$.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.</p>

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$. (2)Recall $\mathcal{I}_f = \{A \subset \omega : \sum_{n \in A} f(n) < \infty\}$ where $f : \omega \to \mathbb{R}^+$ such that $\sum_{n \in \omega} f(n) = \infty$. There exist f, g such that $\mathcal{I}_f \nleq_K \mathcal{I}_g$ and $\mathcal{I}_g \nleq_K \mathcal{I}_f$.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$. (2)Recall $\mathcal{I}_f = \{A \subset \omega : \sum_{n \in A} f(n) < \infty\}$ where $f : \omega \to \mathbb{R}^+$ such that $\sum_{n \in \omega} f(n) = \infty$. There exist f, g such that $\mathcal{I}_f \not\leq_K \mathcal{I}_g$ and $\mathcal{I}_g \not\leq_K \mathcal{I}_f$. Let $\mathcal{I} = \mathcal{I}_f \bigoplus \mathcal{I}_g$.

Theorem

- There exist models in which p < c and for every space X with character in [p, c), Φ(X) is ture;
- (2) There exist models in which p < c and there exists a space X with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ -stage finite support iteration of Mathias-Prikry forcings $\mathbb{M}(\mathcal{I}^*_{\alpha})$ for $\alpha < \kappa$ by a book-keeping device such that for every F_{σ} -ideal \mathcal{I} in $V[G_{\kappa}]$, we have $V[G_{\alpha}]$ satisfies $\mathcal{I}_{\alpha} = \mathcal{I}$ for cofinally many $\alpha < \kappa$. (2)Recall $\mathcal{I}_{f} = \{A \subset \omega : \sum_{n \in A} f(n) < \infty\}$ where $f : \omega \to \mathbb{R}^{+}$ such that $\sum_{n \in \omega} f(n) = \infty$. There exist f, g such that $\mathcal{I}_{f} \nleq_{K} \mathcal{I}_{g}$ and $\mathcal{I}_{g} \nleq_{K} \mathcal{I}_{f}$. Let $\mathcal{I} = \mathcal{I}_{f} \bigoplus \mathcal{I}_{g}$. Then $\omega_{1} \leq \operatorname{cof}(\mathcal{I}_{f}), \operatorname{cof}(\mathcal{I}_{g}) \leq$ $\operatorname{cof}(\mathcal{N})$. Any model in which $\operatorname{cof}(\mathcal{N}) = \omega_{1} = \mathfrak{p}$ and $\mathfrak{c} = \omega_{2}$ is as desired.

Definition

Let \mathcal{P} be a class of topological spaces and \mathcal{Q} be a class of ideals. Define $\mathfrak{fu}_{\chi}(\mathcal{P}, \mathcal{Q}) = \min\{\kappa : \text{there exists a space } X \text{ with } \mathcal{P} \text{ and } \chi(X) = \kappa \text{ and a tall } \mathfrak{Fr} \subset \mathcal{I} \in \mathcal{Q} \text{ such that } \mathcal{I}\text{-closedness is not always preserved by finite unions in } X\}.$

Definition

Let \mathcal{P} be a class of topological spaces and \mathcal{Q} be a class of ideals. Define $\mathfrak{fu}_{\chi}(\mathcal{P}, \mathcal{Q}) = \min\{\kappa : \text{there exists a space } X \text{ with } \mathcal{P} \text{ and } \chi(X) = \kappa \text{ and a tall } \mathfrak{Fr} \subset \mathcal{I} \in \mathcal{Q} \text{ such that } \mathcal{I}\text{-closedness is not always preserved by finite unions in } X\}.$

Many problems such as:

Definition

Let \mathcal{P} be a class of topological spaces and \mathcal{Q} be a class of ideals. Define $\mathfrak{fu}_{\chi}(\mathcal{P}, \mathcal{Q}) = \min\{\kappa : \text{there exists a space } X \text{ with } \mathcal{P} \text{ and } \chi(X) = \kappa \text{ and a tall } \mathfrak{Fr} \subset \mathcal{I} \in \mathcal{Q} \text{ such that } \mathcal{I}\text{-closedness is not always preserved by finite unions in } X\}.$

Many problems such as:

Problem

Find ZFC bounds of $\mathfrak{fu}_{\chi}(X(\mathcal{I}), F_{\sigma})$.

Some applications of the theory of Katětov order to ideal converg

伺 ト く ヨ ト く ヨ ト

Definition

Let \mathcal{P} be a class of topological spaces and \mathcal{Q} be a class of ideals. Define $\mathfrak{fu}_{\chi}(\mathcal{P}, \mathcal{Q}) = \min\{\kappa : \text{there exists a space } X \text{ with } \mathcal{P} \text{ and } \chi(X) = \kappa \text{ and a tall } \mathfrak{Fr} \subset \mathcal{I} \in \mathcal{Q} \text{ such that } \mathcal{I}\text{-closedness is not always preserved by finite unions in } X\}.$

Many problems such as:

Problem

Find ZFC bounds of $\mathfrak{fu}_{\chi}(X(\mathcal{I}), F_{\sigma})$.

Problem

Is $\mathfrak{fu}_{\chi}(\emptyset, \emptyset) = \mathfrak{fu}_{\chi}(X(\mathcal{I}), F_{\sigma})$?

Some applications of the theory of Katětov order to ideal converg

・ 同 ト ・ ヨ ト ・ ヨ ト …

If for every \mathcal{I} -closed set $E \subset Y$ the set $f^{-1}(E)$ is \mathcal{I} -closed in X, we say f is \mathcal{I} -continuous.

< ∃ > <

If for every \mathcal{I} -closed set $E \subset Y$ the set $f^{-1}(E)$ is \mathcal{I} -closed in X, we say f is \mathcal{I} -continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let \mathcal{I} be an ideal on ω . Must every \mathcal{I} -continuous mapping preserve \mathcal{I} -convergence?

If for every \mathcal{I} -closed set $E \subset Y$ the set $f^{-1}(E)$ is \mathcal{I} -closed in X, we say f is \mathcal{I} -continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let \mathcal{I} be an ideal on ω . Must every \mathcal{I} -continuous mapping preserve \mathcal{I} -convergence?

(the answer is NO)

If for every \mathcal{I} -closed set $E \subset Y$ the set $f^{-1}(E)$ is \mathcal{I} -closed in X, we say f is \mathcal{I} -continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let \mathcal{I} be an ideal on ω . Must every \mathcal{I} -continuous mapping preserve \mathcal{I} -convergence?

(the answer is NO)

Problem (X.G.Zhou, L.Liu and S.Lin)

Let $\mathcal{J}', \mathcal{J}$ be ideals on ω such that $\mathcal{J}' \subseteq \mathcal{J}$. Suppose $f : X \to Y$ preserves \mathcal{J} -convergence. Does f preserve \mathcal{J}' -convergence?

・ 同 ト ・ ヨ ト ・ ヨ ト …
More questions

If for every \mathcal{I} -closed set $E \subset Y$ the set $f^{-1}(E)$ is \mathcal{I} -closed in X, we say f is \mathcal{I} -continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let \mathcal{I} be an ideal on ω . Must every \mathcal{I} -continuous mapping preserve \mathcal{I} -convergence?

(the answer is NO)

Problem (X.G.Zhou, L.Liu and S.Lin)

Let $\mathcal{J}', \mathcal{J}$ be ideals on ω such that $\mathcal{J}' \subseteq \mathcal{J}$. Suppose $f : X \to Y$ preserves \mathcal{J} -convergence. Does f preserve \mathcal{J}' -convergence?

(the answer is NO if $\mathcal{J}' \leq_K \mathcal{J}$)

・ 同 ト ・ ヨ ト ・ ヨ ト …

References

- J. Brendle, B. Farkas, and J. Verner, *Towers in filters, cardinal invariants, and Luzin type families*, The Journal of Symbolic Logic **83** (2018), no. 3, 1013–1062.
- Michael Hrušák, Katětov order on Borel ideals, Archive for Mathematical Logic 56 (2017), no. 7-8, 831–847.
- M Hrušák, Combinatorics of filters and ideals, set theory and its applications, 29–69, Contemp. Math 533 (2011), 345–352.
- Arnold W Miller, *The cardinal characteristic for relative* γ *-sets*, Topology and its Applications **156** (2009), no. 5, 872–878.
- Xiangeng Zhou, Li Liu, and Shou Lin, On topological spaces defined by *I*-convergence, Bulletin of the Iranian Mathematical Society (2019), 1–18.

く 戸 と く ヨ と く ヨ と …

Thank you for your attention!

Email: zhanghangzh@sina.com; hzhangzh@gmail.com

Some applications of the theory of Katětov order to ideal convergence