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Summary

1 Basics on ideals and ideal convergence

2 I-closed sets and main problem

3 Basics on Katětov order
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Ideals on countable sets

An ideal I on a countable set C is a family of subsets of C such
that I is closed with finite unions and subsets.

e.g., Fr = {F ⊂ C : F is a finite set}, and
I 1

n
= {A ⊂ ω :

∑
n∈A

1
n <∞}

Denote I+ = P(ω) \ I. A set A ⊆ ω is called I-positive if
A ∈ I+.
An ideal I is tall (or dense) if for every infinite A ⊆ ω there is
I ∈ I such that A ∩ I is infinite.
e.g.,I 1

n
is tall, while I 1

n

⊕
Fr is not!(sum of two ideals:

I
⊕
J = {A ∪B : A ⊆ C,B ⊆ D,A ∈ I, B ∈ J } is an ideal on

C ∪D, where I is an ideal on C and J is an ideal on D and
C ∩D = ∅)
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem
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Ideals on countable sets

An ideal I on a countable set C is a family of subsets of C such
that I is closed with finite unions and subsets.

e.g., Fr = {F ⊂ C : F is a finite set}, and
I 1

n
= {A ⊂ ω :

∑
n∈A

1
n <∞}

Denote I+ = P(ω) \ I. A set A ⊆ ω is called I-positive if
A ∈ I+.
An ideal I is tall (or dense) if for every infinite A ⊆ ω there is
I ∈ I such that A ∩ I is infinite.
e.g.,I 1

n
is tall, while I 1

n

⊕
Fr is not!(sum of two ideals:

I
⊕
J = {A ∪B : A ⊆ C,B ⊆ D,A ∈ I, B ∈ J } is an ideal on

C ∪D, where I is an ideal on C and J is an ideal on D and
C ∩D = ∅)

Some applications of the theory of Katětov order to ideal convergence
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ideal convergence

Let X be a topological space and I be an ideal on ω

Say a sequence {xn : n < ω} in X is I-convergent to x ∈ X if
{n : xn /∈ U} ∈ I for every open neighborhood U of x.
Note Fr-convergence means the convergence in classical sense. If a
sequence {xn : n < ω} is Fr-convergent to x, we just say
{xn : n < ω} is convergent to x.
For every infnite A ⊂ ω, the corresponding subsequence of
{xn : n < ω} will be denoted by {xn}n∈A.
Note that a subsequence {xn}n∈A is I-convergent to x means:
if {a1, a2, · · · , ak, · · · } is the increasing enumeration of A,
then {k < ω : xak /∈ U} ∈ I for every open neighborhood U of x.

Some applications of the theory of Katětov order to ideal convergence
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem
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ideal convergence

Let X be a topological space and I be an ideal on ω
Say a sequence {xn : n < ω} in X is I-convergent to x ∈ X if
{n : xn /∈ U} ∈ I for every open neighborhood U of x.
Note Fr-convergence means the convergence in classical sense. If a
sequence {xn : n < ω} is Fr-convergent to x, we just say
{xn : n < ω} is convergent to x.
For every infnite A ⊂ ω, the corresponding subsequence of
{xn : n < ω} will be denoted by {xn}n∈A.
Note that a subsequence {xn}n∈A is I-convergent to x means:
if {a1, a2, · · · , ak, · · · } is the increasing enumeration of A,
then {k < ω : xak /∈ U} ∈ I for every open neighborhood U of x.

Some applications of the theory of Katětov order to ideal convergence
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I-closed sets

In 2018, X.G. Zhou, L. Liu and S. Lin introduced the following:

A set A ⊂ X is called I-closed if for every x ∈ X we have:
x ∈ A if there is a sequence {xn} ⊂ A such that {xn} is
I-convergent to x.
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Main problem

It is clear for I = Fr the following is ture in any space: every finite
union of I-closed subsets is I-closed.

Theorem (X.G. Zhou, L. Liu and S. Lin)

Let X be a topological space and I be a maximal ideal. Then
every finite union of I-closed subsets of X is I-closed.

Problem (X.G. Zhou, L. Liu and S. Lin)

Whether every finite union of I-closed subsets is I-closed for every
ideal I?

Some applications of the theory of Katětov order to ideal convergence
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Katětov order

I is Katětov below J , denoted by I ≤K J , if

there is an f : ω → ω such that f−1(A) ∈ J for every A ∈ I.
If I ≤K J and J ≤K I, then we say I,J are Katětov equivalent,
denoted by I =K J .
For an infinite set A ⊂ ω we define I|A = {I ∩A : I ∈ I}.
Then I|A is an ideal on A.
I is Katětov below I|A for every infinite A ⊂ ω.
An ideal I on ω is K-uniform if I|A ≤K I for every I-positive set
A.
(i.e.,I|A =K I for every I-positive set A)

Some applications of the theory of Katětov order to ideal convergence
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I is Katětov below I|A for every infinite A ⊂ ω.
An ideal I on ω is K-uniform if I|A ≤K I for every I-positive set
A.
(i.e.,I|A =K I for every I-positive set A)

Some applications of the theory of Katětov order to ideal convergence
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denoted by I =K J .
For an infinite set A ⊂ ω we define I|A = {I ∩A : I ∈ I}.
Then I|A is an ideal on A.
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denoted by I =K J .
For an infinite set A ⊂ ω we define I|A = {I ∩A : I ∈ I}.
Then I|A is an ideal on A.
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ZFC positive answer

Theorem

Let I be a K-uniform ideal on ω. Then I-closedness is preserved
by finite unions in any space.

This generalizes the theorem of X.G. Zhou, L. Liu and S. Lin, since
we have:

Theorem (D.Meza)

Every maximal ideal is K-uniform.
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ZFC negative answer

An ideal I is Fσ if I is an Fσ subset of the Cantor space 2ω via
characteristic functions.

Theorem

There exist an Fσ ideal I and a countable zero-dimensional
Hausdorff space X with χ(X) = c such that Y ∪ Z is not I-closed
for some (disjoint) I-closed subsets Y,Z of X.

KEY POINT. Let I be an ideal on ω and A ⊂ ω. Denote
X(I) = ω ∪ {ω} in which each n ∈ ω is isolated and the
topological base at ω is {{ω} ∪ F : F ∈ I∗}. TFAE:

(1) A ⊆ ω is I-closed in X(I);
(2) no sequence in A can be I-convergent to ω in X(I);
(3) I|A �K I.

Proof sketch.

Let I = S
⊕
ED and X = X(I). Use S �K I and ED �K I.
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Consistent answers

Let Φ(X) be the formula:

“for every tall Fσ ideal I ⊃ Fr, I-closedness is preserved by finite
unions in X”

Lemma

Let X be a space and I be an ideal on ω such that Fr ⊆ I. If
χ(X) < p, then I-closedness is preserved by finite unions in X.

χ(X) < p ∈ [p, c) ≥ c

Φ(X) True

?

False

Some applications of the theory of Katětov order to ideal convergence
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Consistent answers

Theorem

(1) There exist models in which p < c and for every space X with
character in [p, c), Φ(X) is ture;

(2) There exist models in which p < c and there exists a space X
with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ-stage finite support
iteration of Mathias-Prikry forcings M(I∗α) for α < κ by a
book-keeping device such that for every Fσ-ideal I in V [Gκ], we
have V [Gα] satisfies Iα = I for cofinally many α < κ.
(2)Recall If = {A ⊂ ω :

∑
n∈A f(n) <∞} where f : ω → R+

such that
∑

n∈ω f(n) =∞. There exist f, g such that If �K Ig
and Ig �K If . Let I = If

⊕
Ig. Then ω1 ≤ cof(If ),cof(Ig) ≤

cof(N ). Any model in which cof(N )= ω1 = p and c = ω2 is as
desired.

Some applications of the theory of Katětov order to ideal convergence
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem
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Consistent answers

Theorem

(1) There exist models in which p < c and for every space X with
character in [p, c), Φ(X) is ture;

(2) There exist models in which p < c and there exists a space X
with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ-stage finite support
iteration of Mathias-Prikry forcings M(I∗α) for α < κ by a
book-keeping device such that for every Fσ-ideal I in V [Gκ], we
have V [Gα] satisfies Iα = I for cofinally many α < κ.
(2)Recall If = {A ⊂ ω :

∑
n∈A f(n) <∞}

where f : ω → R+

such that
∑

n∈ω f(n) =∞. There exist f, g such that If �K Ig
and Ig �K If . Let I = If

⊕
Ig. Then ω1 ≤ cof(If ),cof(Ig) ≤

cof(N ). Any model in which cof(N )= ω1 = p and c = ω2 is as
desired.

Some applications of the theory of Katětov order to ideal convergence
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Consistent answers

Theorem

(1) There exist models in which p < c and for every space X with
character in [p, c), Φ(X) is ture;

(2) There exist models in which p < c and there exists a space X
with character in [p, c) such that Φ(X) is false.

Proof sketch.

(1)Start with a model V of GCH. Do a κ-stage finite support
iteration of Mathias-Prikry forcings M(I∗α) for α < κ by a
book-keeping device such that for every Fσ-ideal I in V [Gκ], we
have V [Gα] satisfies Iα = I for cofinally many α < κ.
(2)Recall If = {A ⊂ ω :

∑
n∈A f(n) <∞} where f : ω → R+

such that
∑

n∈ω f(n) =∞. There exist f, g such that If �K Ig
and Ig �K If . Let I = If

⊕
Ig. Then ω1 ≤ cof(If ),cof(Ig) ≤

cof(N ). Any model in which cof(N )= ω1 = p and c = ω2 is as
desired.
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Possibly new cardinal invariants

Definition

Let P be a class of topological spaces and Q be a class of ideals.
Define fuχ(P,Q) = min{κ : there exists a space X with P and
χ(X) = κ and a tall Fr ⊂ I ∈ Q such that I-closedness is not
always preserved by finite unions in X}.

Many problems such as:

Problem

Find ZFC bounds of fuχ(X(I), Fσ).

Problem

Is fuχ(∅, ∅) = fuχ(X(I), Fσ)?
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem

More questions

If for every I-closed set E ⊂ Y the set f−1(E) is I-closed in X,
we say f is I-continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let I be an ideal on ω. Must every I-continuous mapping preserve
I-convergence?

(the answer is NO)

Problem (X.G.Zhou, L.Liu and S.Lin)

Let J ′,J be ideals on ω such that J ′ ⊆ J . Suppose f : X → Y
preserves J -convergence. Does f preserve J ′-convergence?

(the answer is NO if J ′ ≤K J )
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Basics on ideals and ideal convergence I-closed sets and main problem Basics on Katětov order Applications of Katětov order to the main problem

More questions

If for every I-closed set E ⊂ Y the set f−1(E) is I-closed in X,
we say f is I-continuous.

Problem (X.G.Zhou, L.Liu and S.Lin)

Let I be an ideal on ω. Must every I-continuous mapping preserve
I-convergence?

(the answer is NO)

Problem (X.G.Zhou, L.Liu and S.Lin)

Let J ′,J be ideals on ω such that J ′ ⊆ J . Suppose f : X → Y
preserves J -convergence. Does f preserve J ′-convergence?

(the answer is NO if J ′ ≤K J )

Some applications of the theory of Katětov order to ideal convergence
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